Saproxylic beetle species in logging residues: which are they and which residues do they use?

Mats Jonsell

Jonsell, M. 2008. Saproxylic beetle species in logging residues: which are they and which residues do they use? Norw. J. Entomol. 55, 109–122.

Small-diameter wood is largely overlooked when considering substrates used by saproxylic insects. Large amounts of such wood have always been retained after felling, in the form of logging residues. However, recent interest in renewable energy sources has made the extraction of such logging residues profitable. If this continues, saproxylic insects will have less substrate in which to breed. To determine which species of saproxylic beetles (Coleoptera) may be affected, this study investigated the fauna of four tree genera (aspen, birch, oak and spruce), three diameter classes (1-15 cm) and two decay stages of logging residues in southern Sweden. The aim was to determine which species were present in the wood, and to describe their associations with different categories of residue. The beetles were collected by rearing them out from 794 wood samples. In total, 49 109 beetles were found, belonging to 160 species; of these 22 are, or used to be red listed in Sweden. Fifty-six of the species were sufficiently frequent to allow statistical analysis of their substrate associations and these are presented species-wise. Only four species exhibited no significant association with host tree species and only eight did not vary on the basis of decay stage. Species in more decayed wood were less specific with respect to tree species association. Thirty-five species displayed a significant relationship with diameter class. Species associated with the thinnest wood categories and with a preference for sunexposure, for example three buprestids recorded here, are expected to be the most severely affected by the harvesting of logging residues.

Key words: Coleoptera, Bioenergy wood, FWD, Logging residues, Saproxylic, Slash, Substrate associations.

Mats Jonsell, Dept of Ecology, SLU, Box 7044, SE-750 07 Uppsala, Sweden E-mail: mats.jonsell@ekol.slu.se

INTRODUCTION

The removal of dead wood has been identified as one major reason for forestry presenting a threat to many species (Esseen et al. 1997). This is because many thousands of species are saproxylic, i.e. they depend on dead wood for the successful completion of their life cycles (Siitonen 2001, deJong et al. 2004). Beetles (Coleoptera) is the most species rich group of saproxylic insects that has been reasonably well studied. Previous research is valuable when evaluating the effects of nature conservation measures. However, relatively little research has focused on the fauna of smalldiameter wood, because, until recently, such wood was not commercially interesting (Jonsell 2008). It was retained within the forest, so the species using it have not been regarded as suffering from any shortage of breeding substrate; conservationists have, therefore, generally overlooked it. This situation is now changing. Increasing concerns about global warming, resulting from combustion of fossil fuels, have opened up the market for renewable fuels; in Scandinavia, at least, these may largely consist of logging residues (Lundborg 1998). This will inevitably mean that the amount of decaying wood, an already a restricted resource, will decrease.

In assessing the risks to biodiversity of harvesting logging residues, it is important to know which species are found in this wood. It is also important to know whether there are differences in species assemblages associated with the different types of forest fuels. Such data exist for many species, at least in the form of the personal knowledge of beetle collectors. However, such data are generally anecdotal, and often vague. Despite this, such information is often used in conservation planning (Berg et al. 1994, Dahlberg & Stokland 2004, Tikkanen et al. 2006). Quantitative studies of saproxylic species and their habitat associations are, therefore, very valuable (Haila 1994), not least for logging residues, which are under-represented in the published research. In this paper, I present information on the species found in a large-scale survey of logging residues in southern Sweden. An overview of the survey, listing species numbers in various categories of wood, is presented in Jonsell et al. (2007). Here, the actual species behind these numbers are presented and their associations with logging residues of different decay stages, tree genera and diameters are described.

The specific questions addressed are: which beetle species are found in logging residues on clear cuts in south Sweden? Of these, are any red-listed? What associations are there between species and different types of logging residues?

MATERIAL & METHODS

Samples of logging residue wood were collected in the years 2002-2004 from 60 clear cuts in southern Sweden. The wood was collected during three different time periods (sampling series); between these, there are some differences in the categories of wood collected and the sites sampled (the details can be found in Jonsell et al. 2007). The first and the second sampling series included only part of the categories and consisted in total of 182 samples. The third sample serie was the largest including 612 samples from clear cuts located at 14 different sites (Figure 1). At each of these sites all wood categories were represented (except in some occasions when specific categories could not be found). At each site (except in serie two), wood was sampled from one one-summer-old and one 3-5 year-old clear cut. Sometimes more than two clear cuts were visited on a site to find samples of all wood-categories (see below). The clear cuts were selected on the basis of region, age since cutting and tree-species composition.

Three main factors were compared: tree species (four species), diameter (three classes), and substrate age (two ages). Rearing method (two types) was an additional factor in the analyses. From each clear cut we sampled two to four tree species: aspen (*Populus tremula* L.), birch (*Betula pubescens* Ehrh. and *B. verucosa* Ehrh.), oak (*Quercus robur* L.), and spruce (*Picea abies* (L.) Karst.). For each tree species, we collected samples from two or three different diameter classes: 1-4 cm, 4-8 cm and 8-15 cm. From each clear cut, we sampled two bundles of each combination of tree species and diameter class, giving a total of 24 bundles of wood to represent each sampled clear cut. However, in sampling series number one and

Figure 1. Location of the sampling sites of the largest sampling series (series three) in southern Sweden.

Sample serie three No of sites

2

All Samples No of samples

Red-list cat 2000-2005

_

Sample serie three No of inds

Table 1. Saproxylic beetle species reared out of logging residues on clear cuts in southern Sweden. First data column encompass species from all samples, while the two others only include samples from the third sample series (see Fig. 1). Names and systematical order according to Lundberg and Gustafsson (1995).

Table 1. continued

Species	Red-list cat 2000-2005	All Samples No of samples	Sample serie three No of sites	Sample serie three No of inds	Species
Anisotoma humeralis (Fabricius,1792)	_	1	1	1	Ennearthron cornutum (Gyllenhal, 1827)
Phosphuga atrata (Linnaeus,1758)	-	2	2	2	Orthocis alni (Gyllenhal, 1813)
Gabrius splendidulus (Gravenhorst, 1802)	-	3	3	8	Orthocis vestitus (Mellie, 1848)
Gabrius expectatus Smetana,1952	-	1	1	1	Orthocis festivus (Panzer, 1793) Sulcacis affinis (Gyllenhal, 1827)
Quedius xanthopus Erichson,1839 Bibloporus bicolor (Denny,1825)	-	1 4	1 3	1 7	Octotemnus glabriculus (Gyllenhal, 1827)
Tyrus mucronatus (Panzer, 1803)	-	7	5	9	Synchita humeralis (Fabricius, 1792)
Acrulia inflata (Gyllenhal, 1813)	-	5	4	5	Bitoma crenata (Fabricius, 1775)
Phloeonomus sjoebergi Strand, 1937	-	1	1	1	Litargus connexus (Fourcroy, 1785)
Phloeocharis subtilissima Mannerheim, 1830 Sepedophilus littoreus (Linnaeus, 1758)) -	61 1	13 1	115 1	Pyrochroa coccinea (Linnaeus, 1761) Schizotus pectinicornis (Linnaeus, 1758)
Phloeopara corticalis (Gravenhorst, 1802)	-	19	9	29	Salpingus planirostris (Fabricius, 1787)
Dadobia immersa (Erichson, 1837)	-	55	11	119	Salpingus ruficollis (Linnaeus, 1761)
Dinaraea aequata (Erichson, 1837)	-	19	9	35	Anidorus nigrinus (Germar, 1831)
Leptusa pulchella (Mannerheim, 1830)	-	6	5	6	Corticeus linearis (Fabricius, 1790) Anaspis bohemica Schilsky, 1898
Leptusa fumida (Erichson, 1839) Leptusa ruficollis (Erichson, 1839)	-	47 25	11 8	102 49	Anaspis bonemica Schisky, 1996 Anaspis marginicollis Lindberg, 1925
Anomagnathus cuspidatus (Erichson, 1839)	-	44	12	102	Anaspis thoracica (Linnaeus, 1758)
Homalota plana (Gyllenhal, 1810)	-	2	2	3	Anaspis rufilabris (Gyllenhal, 1827)
Cyphea curtula (Erichson, 1837)	NT-N	Γ 1			Anaspis flava (Linnaeus, 1758)
Placusa depressa Mäklin, 1845	-	1	1	1	Tomoxia bucephala Costa, 1854
Trichius fasciatus (Linnaeus, 1758)	-	4	4	12	Mordella holomelaena Apfelbeck, 1914 Curtimorda maculosa (Naezen, 1794)
Platycerus caprea (De Geer, 1774) Lygistopterus sanguineus (Linnaeus, 1758)	NT-0	2 18	2 8	2 37	Orchesia micans (Panzer, 1794)
Denticollis linearis (Linnaeus, 1758)	-	4	3	4	Orchesia undulata Kraatz, 1853
Denticollis borealis (Paykull, 1800)	NT-N1	Γ2	2	3	Abdera triguttata (Gyllenhal, 1827)
Melanotus castanipes (Paykull, 1800)	-	2	2	3	Rhagium mordax (De Geer, 1775)
Microrhagus lepidus Rosenhauer, 1847	NT-N1		1	8	Rhagium inquisitor (Linnaeus, 1758)
Microrhagus pygmaeus (Fabricius, 1792) Anthaxia quadripunctata (Linnaeus, 1758)	-	1 20	1 7	8 64	Anoplodera rubra (Linnaeus, 1758) Anoplodera sanguinolenta (Linnaeus, 1761)
Anthaxia godeti Gory, 1841	-	20	1	1	Leptura quadrifasciata Linnaeus, 1758
Chrysobothris affinis (Fabricius, 1794)	-	23	7	70	Leptura melanura Linnaeus, 1758
Agrilus angustulus (Illiger, 1803)	-	36	8	450	Molorchus minor (Linnaeus, 1758)
Agrilus sulcicollis Lacordaire, 1835	-	27	6	75	Callidium aeneum (De Geer, 1775)
Agrilus betuleti (Ratzeburg, 1837)	-	42	12	136	Pyrrhidium sanguineum (Linnaeus, 1758) Phymatodes testaceus (Linnaeus, 1758)
Agrilus viridis (Linnaeus, 1758) Agrilus suvorovi populneus Schaefer, 1946	-	9 43	4 7	18 277	Poecilium alni (Linnaeus, 1767)
Anthrenus museorum (Linnaeus, 1761)	-	1	1	1	Xylotrechus rusticus (Linnaeus, 1758)
Ptinus fur (Linnaeus, 1758)	-	4	3	3	Xylotrechus antilope (Schönherr, 1817)
Ernobius mollis (Linnaeus, 1758)	-	2	1	3	Clytus arietis (Linnaeus, 1758)
Anobium thomsoni (Kraatz, 1881)	-	2	1	4	Plagionotus arcuatus (Linnaeus, 1758) Monochamus sutor (Linnaeus, 1758)
Hylecoetus dermestoides (Linnaeus, 1761) Nemozoma elongatum (Linnaeus, 1761)	-	2 17	1 9	1 27	Pogonocherus hispidulus (P.&Mitterpacher,17
Thanasimus formicarius (Linnaeus, 1758)	-	2	1	3	Pogonocherus fasciculatus (De Geer, 1775)
Dasytes niger (Linnaeus, 1761)		52	12	75	Acanthoderes clavipes (Schrank, 1781)
Dasytes cyaneus (Fabricius, 1775)	-	28	10	41	Leiopus nebulosus (Linnaeus, 1758)
Dasytes plumbeus (Müller, 1776)	-	34	8	37	Leiopus punctulatus (Paykull, 1800)
Malachius bipustulatus (Linnaeus, 1758)	-	2	1	1	Saperda scalaris (Linnaeus, 1758) Saperda perforata (Pallas, 1773)
Epuraea pygmaea (Gyllenhal, 1808) Epuraea rufomarginata (Stephens, 1830)	-	1 4	1 2	1 4	Allandrus undulatus (Panzer, 1795)
Glischrochilus quadripunctatus (L., 1758)	-	3	1	1	Dissoleucas niveirostris (Fabricius, 1798)
Rhizophagus dispar (Paykull, 1800)	-	23	12	30	Platystomus albinus (Linnaeus, 1758)
Rhizophagus bipustulatus (Fabricius, 1792)	-	6	5	6	Choragus horni Wolfrum, 1930
Dendrophagus crenatus (Paykull, 1799)	NT-0	1	1	1	Rhyncolus ater (Linnaeus, 1758)
Laemophloeus muticus (Fabricius, 1781)	NT–VU	J 1 1	1 1	1 2	Magdalis duplicata Germar, 1819 Magdalis violacea (Linnaeus, 1758)
Cryptolestes ferrugineus (Stephens, 1831) Cryptolestes alternans (Erichson, 1846)	-	1	1	1	Magdalis carbonaria (Linnaeus, 1758)
Cryptophagus corticinus Thomson, 1863	-	2			Magdalis cerasi (Linnaeus, 1758)
Dacne bipustulata (Thunberg, 1781)	-	6	3	4	Hylobius abietis (Linnaeus, 1758)
Cerylon fagi Brisout de Barneville, 1867	-	5	3	8	Pissodes pini (Linnaeus, 1758)
Cerylon histeroides (Fabricius, 1792)	-	4	3	17	Trachodes hispidus (Linnaeus, 1758) Hylurgops palliatus (Gyllenhal, 1813)
Cerylon ferrugineum Stephens, 1830 Cerylon deplanatum Gyllenhal, 1827	- NT-0	4 1	4 1	14 1	Xylechinus pilosus (Ratzeburg, 1837)
Orthoperus punctatus Wankowicz, 1865	-	2	1	3	Phloeotribus spinulosus (Rey, 1883)
Orthoperus mundus Matthews, 1885	-	3	3	8	Scolytus ratzeburgi Janson, 1856
Latridius hirtus Gyllenhal, 1827	-	2	2	2	Scolytus intricatus (Ratzeburg, 1837)
Latridius minutus (Linnaeus, 1767)	-	15	4	12	Pityogenes chalcographus (Linnaeus, 1761)
Enicmus testaceus (Stephens, 1830) Enicmus transversus (Olivier, 1790)	-	1 1	1 1	1 1	Pityogenes quadridens (Hartig, 1834) Pityogenes bidentatus (Herbst, 1783)
<i>Enicmus transversus</i> (Olivier, 1790) <i>Dienerella elongata</i> (Curtis, 1830)	-	14	6	43	Orthotomicus suturalis (Gyllenhal, 1827)
Aridius nodifer (Westwood, 1839)	-	14	1	3	Ips typographus (Linnaeus, 1758)
Corticaria lapponica (Zetterstedt, 1838)	NT-0	1		0	Dryocoetes autographus (Ratzeburg, 1837)
Corticaria rubripes Mannerheim, 1844	-	1	1	1	Crypturgus spp.
Cis comptus Gyllenhal, 1827	-	6	5	60	Trypodendron domesticum (Linnaeus, 1758
Cis hispidus (Paykull, 1798)	-	136	14	1687	Trypodendron lineatum (Olivier, 1795) Xyleborus dispar (Fabricius, 1792)
Cis setiger Mellie, 1848 Cis micans (Fabricius, 1792)	- NT-NT	8 Г 23	3 4	52 314	Xyleborinus saxesenii (Ratzeburg, 1837)
Cis boleti (Scopoli, 1763)	-	82	13	540	Trypophloeus bispinulus Eggers, 1927
Cis rugulosus Mellie, 1848	NT-N		1	8	Trypophloeus grothii (Hagedorn, 1904)
Cis punctulatus Gyllenhal, 1827		21	7	95	Pityophthorus micrographus (Linnaeus, 175

	-	2	2		
cis festivus (Panzer, 1793)	-	29	8	128	
cis affinis (Gyllenhal, 1827)	-	135	14	1917	
emnus glabriculus (Gyllenhal, 1827)	-	73	11	488	
hita humeralis (Fabricius, 1792)	-	33	10	85	
a crenata (Fabricius, 1775)	-	56	14	130	
us connexus (Fourcroy, 1785)	-	11	5	23	
hroa coccinea (Linnaeus, 1761)	-	3	2	12	
otus pectinicornis (Linnaeus, 1758)	-	98	14	250	
ngus planirostris (Fabricius, 1787)	_	7	4	200	
ngus ruficollis (Linnaeus, 1761)	_	4	4	4	
rus nigrinus (Germar, 1831)		3	2	3	
eus linearis (Fabricius, 1790)	-	32	13	80	
bis bohemica Schilsky, 1898	-	32	2	6	
	-	1	1	1	
ois marginicollis Lindberg, 1925	-		2	2	
ois thoracica (Linnaeus, 1758)	-	2			
ois rufilabris (Gyllenhal, 1827)	-	4	4	4	
pis flava (Linnaeus, 1758)	-	3	2	5	
xia bucephala Costa, 1854	-	3	3	4	
ella holomelaena Apfelbeck, 1914	-	32	11	68	
norda maculosa (Naezen, 1794)	-	4	4	4	
esia micans (Panzer, 1794)	-	1	1	16	
esia undulata Kraatz, 1853	-	19	7	97	
ra triguttata (Gyllenhal, 1827)	-	2	2	4	
ium mordax (De Geer, 1775)	-	10	7	13	
ium inquisitor (Linnaeus, 1758)	-	1	1	1	
lodera rubra (Linnaeus, 1758)	-	1	1	1	
lodera sanguinolenta (Linnaeus, 1761)	-	1	1	1	
ra quadrifasciata Linnaeus, 1758	-	13	8	24	
ra melanura Linnaeus, 1758	-	2	2	2	
chus minor (Linnaeus, 1758)	-	15	8	18	
ium aeneum (De Geer, 1775)	NT-NT	1	1	1	
idium sanguineum (Linnaeus, 1758)	NT-NT	5	2	3	
atodes testaceus (Linnaeus, 1758)	-	5	2	23	
ilium alni (Linnaeus, 1767)	NT-NT	1			
echus rusticus (Linnaeus, 1758)	-	22	9	55	
echus antilope (Schönherr, 1817)	NT-NT	5	1	5	
s arietis (Linnaeus, 1758)	-	13	7	23	
onotus arcuatus (Linnaeus, 1758)	-	26	7	81	
chamus sutor (Linnaeus, 1758)	-	1	1	1	
nocherus hispidulus (P.&Mitterpacher, 1783)	NT-0	2	2	6	
nocherus fasciculatus (De Geer, 1775)	-	30	10	119	
hoderes clavipes (Schrank, 1781)	NT-0	21	7	32	
us nebulosus (Linnaeus, 1758)	-	17	5	41	
us punctulatus (Paykull, 1800)	EN-VU	2	1	2	
rda scalaris (Linnaeus, 1758)	-	23	8	29	
rda perforata (Pallas, 1773)	NT-0	5	3	7	
drus undulatus (Panzer, 1795)	-	22	12	32	
leucas niveirostris (Fabricius, 1798)	NT-0	2	1	2	
stomus albinus (Linnaeus, 1758)	- 1	19	12	29	
agus horni Wolfrum, 1930	VU-NT	1	1	1	
colus ater (Linnaeus, 1758)	-	7	6	9	
alis duplicata Germar, 1819	-	1	1	1	
alis violacea (Lippaeus, 1758)	-	25	10	70	

50

4

. 38

6 19

5 12 NT-NT

NT-NT

11

4 1

2

4 13

. 70 155

8

550

807

. 1185

19 two, at the beginning of the project, only two tree species and two diameters were sampled per clear cut. In addition, it was sometimes impossible to find all four tree-species within a clear cut. In such cases we tried to sample the missing tree species from a nearby clear cut, but there are missing data at some sites. The substrate age could be compared, since about half of the clear cuts were one summer old and the rest 3-5 years-old. All clear cuts were paired: one from each age class, at a distance of 1-3 km.

The wood we collected was chosen so that each sample contained wood from different parts of the clear cut. Usually, small-diameter wood is aggregated in piles by the harvester, in which case we sampled wood from five different piles spread out across the clear cut. Only wood with bark was sampled, because many saproxylic beetle species live under the bark. Wood that fitted into the categories described above was selected subjectively from each pile. It was cut into 50 cm long pieces and packed together in 25-35 cm diameter bundles. The bundles contained similar bark surface areas for each diameter class (on average, ranging from 86 to 116 dm², Jonsell et al. 2007). Consequently, the volume of solid wood was largest for the coarsest diameter class (averages ranging from 6.4 to 26.3 dm³ Jonsell et al. 2007). Especially in the early stages of wood decay, the surface area is probably a better descriptor of the amount of habitat than wood volume, because most species live in the space between the bark and the wood. The bundles were taken to the laboratory, where the insects were reared in a greenhouse at 20 °C. There were some deviations from this temperature, especially during warm days in the summer, but all samples within the same rearing cohort were exposed to the same temperature regime. The rearings continued for at least three months

For practical reasons, we had to use two types of rearing containers: textile sacks and wooden boxes (Jonsell & Hansson 2007). To account for the possible effects of using different rearing containers, one of each bundle type (site, tree species and diameter combination) was enclosed in each type of container. The effect of rearing container was also included in the regression models. When rearing in textile sacks, the bundles of wood were hung from the ceiling by a string then wrapped in a cotton sack with metal wires on the inside to prevent the wood coming into contact with the sack. The insects were collected in a plastic vial attached to a plastic funnel at the bottom of the sack. The remaining wood bundles were placed in boxes made of plywood. Insects were collected in a glass vial inserted in one gable end. At the end of the rearing period, the debris in the bottom of each wooden box was also inspected for insects, since not all insects were caught in the vials.

All saproxylic beetles were determined to species by the authors, according to the nomenclature of Lundberg & Gustafsson (1995). Beetles were classified as saproxylic or not by help of Palm (1959), Hansen (1964) and Koch (1989-1992). Red-listed species were classified according to Gärdenfors (2000, 2005).

Statistics

Associations individual species with of environmental variables were analysed using multiple regression models, including all four variables: age of the clear cut, tree species, diameter class and rearing method. The number of specimens in each sample was the dependent variable. A variable was judged to significantly explain a substrate association if its effects had a probability <0.05 when it was added last to the full model (Type 3 tables in the SAS software). Poisson regression was used, since it is suitable for analysing count data, especially when many results have a value of zero (Quinn & Keough 2002). However, some species, especially Agrilus spp., ciids and bark beetles, frequently emerged either in large numbers or were totally absent. This does not fit the Poisson distribution and causes "overdispersion" in the model, implying that levels of significance are likely to be overestimated. For such species, where the deviance/df exceeded 2, the deviance was rescaled, using the command DSCALE in SAS, so that the deviance/df=1. The same procedure was used for species that were "underdispersed", with a deviance/df less than 0.5. Another problem with the models is that the calculations fail if a species is totally absent from one category of any variable. In such cases, these categories were excluded from the model; consequently, a variable was entirely excluded in cases where a species occurred in only one variable-category. In such cases, the statistical significance of the difference between categories were analysed univariately, using a Fisher exact test in a contingency table. The analyses were conducted using SAS (1989-96).

RESULTS

In total, 49 109 saproxylic beetles were found, belonging to 160 species (Table 1). This included 22 red-listed species according to the red-list of 2000 and 14 according the the red list of 2005 (Table 1). 56 species were sufficiently numerous to be analysed for their microhabitat associations (Table 2, Appendix). Six species were found on all 14 sites of sample series three: *Cis hispidus*, *Orthocis alni*, *Sulcacis affinis*, *Bitoma crenata*, *Schizotus pectinicornis* and *Pityogenes chalcographus* (Table 1). The last of these was also the most abundant, with a total of almost 35 000 individuals.

Most of the 56 species for which habitat associations were investigated exhibited a significant association with the age of the wood (Table 2). Eight species displayed no association, 28 species were associated with 3-5 year-old wood and 20 were associated with one summer old wood.

Most beetle species were also significantly associated with one or more tree species – only four species displayed no significant association (Table 2). Of these one, *Phloeopara corticalis*, also exhibited no association to decay-stage. All tree species had at least some beetle species specifically associated with them: spruce had twelve specialists, oak had four and aspen and birch had three each. In the younger wood, more beetles exhibited host specificity than in the older wood (Table 3).

The different species were less clearly associated with particular diameter classes: 21 species exhibited no associaton (Table 2). Of the others, 19 species were associated with the coarser wood categories, and 21 species with the smallerdiameter wood. There were no correlations between diameter class association and either decay class or tree species association.

DISCUSSION

Species found in logging residues

A large number of saproxylic beetle species were found in the residues. The species composition is not dramatically different from the composition in coarser wood. However, direct comparisons with other studies are complicated, since methods, wood quality and other factors differ. This has been discussed more thoroughly in Jonsell (2008) and Jonsell et al. (2007), so here the focus is on the species themselves. One can conclude that logging residues support a diverse fauna of saproxylic beetles.

Several of the species are red-listed, and it is pertinent to ask whether species that occur in logging residues - a very common type of wood - really should be red-listed. I suggest such a classification can be appropriate; indeed the design of this study probably increased the likelihood of finding such species. This was because we did not survey the most common tree species, but we restricted our survey to sites where oak and aspen occurred. The presence of these tree species usually indicates that the sites have a higher conservation value than the average managed forest in Sweden. Moreover, half of the sites were chosen specifically to target biodiversity hot-spots in Sweden (cf Nilsson 2001, Lindbladh et al. 2007). The three red listed species classified as more threatened than NT (on either version of the red-list) were found in these regions: Laemophloeus muticus was recorded from the Båtfors-area in northern Uppland; Leiopus punctulatus from the Vällen-area in eastern Uppland; and Choragus horni from the Hornsö area in Småland. On the other hand, the most frequent species from the year 2000 red-list,

Table 2. Associations of 56 saproxylic beetle species with various categories of logging residue. An association means that there was a significant variable effect in multiple regression analyses (Appendix). Tree species in parentheses are secondary hosts, i.e. hosts with a parameter estimate (see Appendix) less than half that of the highest, but with more than single occurrences.

Species	n	obs.	Decay stage	Diameter	Tree species
Phloeocharis subtilissima	744	61	Old	No assoc.	Deciduous
Phloeopara corticalis	294	19	No assoc.	No assoc.	No assoc.
Dadobia immersa	744	55	Old	No assoc.	Birch and Oak
_eptusa fumida	744	47	Old	No assoc.	Deciduous
_eptusa ruficollis	744	25	Old	No assoc.	No assoc.
Anomagnathus cuspidatus	744	44	No assoc.	Coarse	Aspen (and deciduous)
ygistopterus sanguineus	376	8	Old	No assoc.	No assoc.
Anthaxia quadripunctata	202	20	No assoc.	Coarse	Spruce
Chrysobothris affinis	365	3	Young	Thin	Oak (and birch)
	131	36		Thin	
Agrilus angustulus			Young		Oak
Agrilus sulcicollis	131	27	Young	Coarse	Oak
lgrilus betuleti	234	42	Young	Thin	Birch
Agrilus suvorovi	177	43	Young	No assoc.	Aspen
lemozoma elongatum	333	17	No assoc.	No assoc.	Spruce
Dasytes niger	744	52	Old	Thin	Spruce and birch
Dasytes cyaneus	744	28	Old	Thin	Aspen and oak
Dasytes plumbeus	744	34	Old	Thin	Oak and spruce
Rhizophagus dispar	744	23	Old	Coarse	Deciduous
atridius minutus	744	15	Young	Thin	Aspen (and deciduous)
	450	13	0	Coarse	,
Dienerella elongata			No assoc.		Not oak
Cis hispidus	744	136	Old	Coarse	Aspen and birch
Cis micans	744	23	Old	Coarse	Aspen and birch
Cis boleti	376	82	Old	Coarse	Deciduous
Cis punctulatus	112	21	Old	Coarse	Spruce
Orthocis alni	744	57	Old	Thin	No assoc.
Orthocis festivus	567	29	Old	Coarse	Birch and Oak
Sulcacis affinis	744	135	Old	Coarse	Deciduous
Octotemnus glabriculus	744	73	Old	Coarse	Deciduous
Synchita humeralis	411	33	Old	No assoc.	Birch (and aspen)
Bitoma crenata	744	56	Old	Coarse	Deciduous
	376	98	Old		
Schizotus pectinicornis				Coarse	Deciduous
Corticeus linearis	613	32	Young	No assoc.	Spruce
Aordella holomelaena	376	32	Old	Thin	Oak, birch (and aspen)
Drchesia undulata	376	19	Old	Coarse	Oak (and deciduous)
eptura quadrifasciata.	189	13	Old	No assoc.	Birch (and aspen)
Iolorchus minor	202	15	No assoc.	No assoc.	Spruce
ylotrechus rusticus	411	22	Young	Coarse	Aspen
Clytus arietis	187	13	Old	Thin	Oak (and birch)
Plagionotus arcuatus	56	26	Young	Coarse	Oak
Pogonocherus fasciculatus	202	30	Young	No assoc.	Spruce
Canthoderes clavipes	542	21	Old	Coarse	Birch (and aspen)
	365	17	Young	No assoc.	Oak (and birch)
eiopus nebulosus	365	23			
Saperda scalaris			No assoc.	Coarse	Oak and birch
Mandrus undulatus	744	22	Young	Thin	Aspen (and birch)
Platystomus albinus	542	19	Old	Thin	Birch
lagdalis violacea	202	25	Young	Thin	Spruce
lagdalis carbonaria	234	50	Young	Thin	Birch
rachodes hispidus	450	13	Old	Thin	Birch and Oak
colytus intricatus	56	38	Young	No assoc.	Oak
Pityogenes chalcographus	90	296	Young	No assoc.	Spruce
Pityogenes bidentatus	90	19	Young	No assoc.	Spruce
Dryocoetes autographus	744	32	Young	Coarse	Spruce
Crypturgus spp.	436	61	Old	Coarse	Spruce
(yleborus dispar	542	18	Young	No assoc.	Oak (and birch)
Trypophloeus grothii	100	12	Young	Thin	Aspen
Pityophthorus micrographus	90	64	Young	No assoc.	Spruce

Acanthoderes clavipes (recorded on seven of the sites included in this survey), was deleted from the revised 2005 red-list. This decision is thus supported by data presented here. Some red-listed species, e.g. *Cis micans* and *Trypophloeus grothii*, were very abundant and more than 300 individuals were recorded. However, they occurred at only four of the sites. Species restricted in their distribution may deserve their entry on the redlist even though they are abundant on the sites

where they do occur. Also, the current increase in the harvesting of logging residues may reduce the habitat available for these species, suggesting that they should remain on the red-list.

It has been suggested that many of the saproxylic species in boreal forests depend on disturbances; originally these mainly consisted of fires (Kouki et al. 2001, Lindhe & Lindelöw 2004). This has implications for species in logging residues,

Table 3. Number of species associated with each decay stage and num-
ber of tree species (Compiled from Table 2 – species with no association
with a specific decay stage are excluded). There is a significant differ-
ence in the distribution between columns (contingency table, x2=26.2,
df=3, p<0.0001).

Number of tree species	Wood one summer old	Wood 3-5 yrs old
One	16	3
Two	4	9
Three	0	13
Four	0	3

since the vast majority of sun-exposed fine wood is created during clear cutting (Jonsell 2008). One group of true sun-lovers are the buprestids (Palm 1959), six species of which were frequent enough to be analysed statistically here. Three of these (*Chrysobotris affinis, Agrilus angustulus* and *A. betuleti*) were associated with the smalldiameter wood. This suggests that these species in particular may decrease if logging residues are harvested on a large scale. Other similar examples could probably be drawn from other families on the species list if there were better data on species' responses to sun-exposure.

Affinity to tree species

Spruce had a higher number of specialist species than any of the deciduous tree species. This is because spruce is more different from the deciduous trees than they are from each other (cf Jonsell et al. 1998). In addition, the level of decay affected the host affinities, since host specificity was lower in decayed wood than in recently dead wood. This is probably because many of the secondary host specific metabolites, which defend against herbivores, are still present when the primary consumers arrive. After some years, these metabolites have degraded, and then other parameters have a greater impact on the species composition. Fungal flora is one very important factor (cf Jonsell et al. 2005). Fungal fruiting bodies exhibit a similar pattern of greater host specificity early in the decay process (Jonsell & Nordlander 2004).

Individual species biology

For many of the species listed in Table 2, the associations with the substrate variables are rather well known, and they correspond to more

anecdotal data presented, for example, in Palm (1959) and Ehnström & Axelsson (2002). This includes most of the species of high interest to forest entomologists, such as Scolytinae, Buprestidae, and Cerambycidae. Since it is not particularly useful to repeat data already in the literature, the following section focuses on species for which the results here add to our knowledge of species biology. The comments follow the systematic order of Table 2.

In general the Staphylinids were not particularly specialised. *Phloeopara corticalis* was probably the greatest generalist in this study, since it occurred in both decay stages and in all tree species at frequencies that were not significantly different. Several other staphylinids were, however, associated with one, two or three of the deciduous tree species, but none were associated with spruce.

Among the buprestids, Chrysobotris affinis was associated with thin wood. Previous authors (Palm 1959, Brechtel & Kostenbader 2002) have recorded that this species makes use of smalldiameter wood, but here it exhibited a significant association with such wood. This is surprising for such a large species. A similar preference is less surprising for the small Agrilus species, of which A. betuleti has a well known association with thin twigs (Ehnström & Axelsson 2002). However, contrary to what is suggested by Ehnström & Axelsson (p 473), there is an overlap in the diameter use with Agrilus viridis, which also occurs in birch. The two Agrilus species on oak made use of different diameter classes, so that A. angustulus was mainly found on thin wood and A. sulcicollis mainly on coarse wood. A third species that is suspected to live on oak, A. laticornis, (Brechtel & Kostenbader 2002, Ehnström & Axelsson 2002) was not found during this investigation, although several of the sites lay within its known range. The species must either be very rare, or must use some other type of wood for breeding. It has been suggested that this species mainly breeds in the dead top twigs of living trees (Niehuis 2004).

Jonsell: Saproxylic beetle species in logging residues

Little is known about the larval biology of species in the genus *Dasytes*; Palm (1959) assigned the larvae of each species to a number of different tree species. Here they were all associated with the thinner diameter classes on older clear cuts, but they all had different host associations. *D. niger* was most common in spruce and birch, whereas *D. cyanea* tended to be found in oak and aspen. *Dasytes plumbeus* was most common in oak and spruce.

Ciid species are fungivores and they often have strong associations with specific hosts (Jonsell & Nordlander 2004). Five of the eight ciid species analysed belong to the assemblage that uses Trametes-species and closely related taxa as hosts (Orledge & Reynolds 2005), namely C. hispidus, Cis micans, C. boleti, Sulcacis affinis and Octotemnus glabriculus. Since these fungi only grow on deciduous trees, the beetles were not found on spruce. However, Cis micans was found only in association with aspen, and C. hispidus was associated with aspen and birch. This is probably because these beetle species use somewhat different host fungi, which in turn use different host trees. The exact host species for these Cis-species are not known, and these results suggest that they are probably not as uniform as one may expect from the literature (Reibnitz 1999, Orledge & Reynolds 2005). These differences may, however also depend on factors other than host specificity (Guevara et al. 2000). Orthocis festivus lives on Stereum species (Orledge & Reynolds 2005) and its association with birch and oak correlates with the host trees of the more common Stereum species in Sweden (Ryman & Holmåsen 1984). Cis punctulatus is a specialist on Trichaptum (Reibnitz 1999, Jonsell et al. 2005, Orledge & Reynolds 2005), which occurs almost exclusively on conifers. Orthocis alni exhibited no preference for particular tree species; its putative host fungi is Auricularia (Orledge & Reynolds 2005).

Among the ciids, almost all species were associated with coarse wood, although the number of occurrences was rather similar between diameter classes. However, many more individuals were reared from the coarse wood. The single ciid exception was *Orthocis alni*, which was associated with fine wood.

The biology of Allandrus undulatus is little known (Ehnström & Axelsson 2002). Here we found it rather frequently on young clear cuts, and it was strongly associated with small-diameter aspen (and birch) wood. It was also widely distributed and found on 12 of the 14 sites. The beetle family to which it belongs, the Anthribidae, is generally associated with ascomycetes (Crowson 1984), but apparently this species requires a very early primary coloniser, since it was found mainly on the young clear cuts. It might even be the agent that disperses the fungus, in the same way as has been suggested for Daldinia loculata (Johannesson et al. 2001). In that case, the fungus occurs endophytically in live, healthy trees in the form of inactive mycelia. When the trees die, insects trigger the decay of the wood and the formation of fruiting bodies, by dispersing asexual conidia between trees. This may explain why a fungivorous beetle is associated with recently dead wood.

Ackowledgements. Jesper Hansson and Lena Wedmo assisted in the fieldwork. Åke Lindelöw supplied useful comments on the manuscript. The study was financed by the Swedish Energy Agency.

REFERENCES

- Berg, Å., Ehnström, B., Gustafsson, L., Hallingbäck, T., Jonsell, M. & Weslien, J. 1994. Threatened plant, animal, and fungus species in Swedish forests: Distribution and habitat associations. Conservation Biology 8, 718–731.
- Brechtel, F. & Kostenbader, H. 2002. Die Pracht- und Hirschkäfer Baden-Württembergs. 632 pp. Verlag Eugen Ulmer GmbH & Co, Stuttgart.
- Crowson, R.A. 1984. The association of Coleoptera with Acomycets. Pp. 256–285 in: Wheeler, Q. & Blackwell, M. (eds.), Fungus-insect relationships. Perspectives in ecology and evolution. Columbia University Press, New York.
- Dahlberg, A. & Stokland, J.N. 2004. Vedlevande arters krav på substrat – sammanställning och analys av 3600 arter pp. Rapport 7, Skogsstyrelsen, Jönköping.

- deJong, J., Dahlberg, A. & Stokland, J.N. 2004. Död ved i skogen. Hur mycket behövs för att bevara den biologiska mångfalden? Svensk Bot. Tidskr. 98, 278– 297.
- Ehnström, B. & Axelsson, R. 2002. Insektsgnag i bark och ved. 511 pp. ArtDatabanken, SLU, Uppsala.
- Esseen, P.-A., Ehnström, B., Ericsson, L. & Sjöberg, K. 1997. Boreal forests. Ecological Bulletins 46, 16–47.
- Guevara, R., Rayner, A.D.M. & Reynolds, S.E. 2000. Effects of fungivory by two specialist ciid beetles (*Octotemnus glabriculus* and *Cis boleti*) on the reproductive fitness of their host fungus, *Coriolus versicolor*. New Phytologist 145, 137–144.
- Gärdenfors, U. 2000. Rödlistade arter i Sverige 2000. 397pp. ArtDatabanken, SLU, Uppsala.
- Gärdenfors, U. 2005. Rödlistade arter i Sverige 2005. 496pp. ArtDatabanken, SLU, Uppsala.
- Haila, Y. 1994. Preserving ecological diversity in boreal forests: ecological background, research, and management. Ann. Zool. Fennici 31, 203–217.
- Hansen, V. 1964. Fortegnelse over Danmarks biller 1. og 2. del. Entomologiske Meddelelser 33, 1–507.
- Johannesson, H., Vasiliauskas, R., Dahlberg, A., Penttilä, R. & Stenlid, J. 2001. Genetic differentiation in Eurasian populations of the postfire ascomycete *Daldinia loculata*. Molecular Ecology 10, 1665–1677.
- Jonsell, M. 2008. The effect of biofuel harvest on biodiversity. Pp. in press in: Röser, D., Asikainen, A., Raulund-Rasmussen, K. & Møller, I.S. (eds.), Sustainable use of wood for energy – a synthesis with focus on the Nordic-Baltic region. Springer,
- Jonsell, M. & Hansson, J. 2007. Comparison of methods for sampling saproxylic beetles in fine wood. Entomologica Fennica 18, 232–241.
- Jonsell, M., Hansson, J. & Wedmo, L. 2007. Diversity of saproxylic beetle species in logging residues in Sweden - comparisons between tree species and diameters. Biological Conservation 138, 89–99.
- Jonsell, M. & Nordlander, G. 2004. Host selection patterns in insects breeding in bracket fungi. Ecological Entomology 29, 697-705.
- Jonsell, M., Schroeder, M. & Weslien, J. 2005. Saproxylic beetles in high stumps of spruce - fungal flora important for determining the species composition. Scandavian Journal of Forest Research 20, 54–62.
- Jonsell, M., Weslien, J. & Ehnström, B. 1998. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodiversity and Conservation 7, 749–764.
- Koch, K. 1989–1992. Die Käfer Mitteleuropas. Ökologie. Band 1–3. 382 pp. Goecke & Evers, Krefeld.
- Kouki, J., Löfman, S., Martikainen, P., Rouvinen, S. & Uotila, A. 2001. Forest fragmentation in Fennoscandia:

Linking habitat requirements of wood-associated threatened species to landscape and habitat changes. Scandavian Journal of Forest Research Supplement 3, 27–37.

- Lindbladh, M., Abrahamsson, M., Seedre, M. & Jonsell, M. 2007. Saproxylic beetles in artificially created highstumps of spruce and birch within and outside hotspot areas Biodiversity and Conservation 16, 3213–3226.
- Lindhe, A. & Lindelöw, Å. 2004. Cut high stumps of spruce, birch, aspen and oak as breeding substrates for saproxylic beetles. Forest Ecology and Management 203, 1–20.
- Lundberg, S. & Gustafsson, B. 1995. Catalogus Coleopterorum Sueciae. 215 pp. Naturhistoriska riksmuseet, Stockholm.
- Lundborg, A. 1998. A sustainable forest fuel system in Sweden. Biomass and Bioenergy 15, 399–406.
- Niehuis, M. 2004. Die Prachtkäfer in Rheinland-Pfalz und im Saarland. 711 pp. GNOR-Eigenverlag, Mainz.
- Nilsson, S.G. 2001. Sydsveriges viktigaste områden för bevarandet av hotade arter – vedskalbaggar som vägvisare till kärnområdena. Fauna och Flora 96, 59–70.
- Orledge, G.M. & Reynolds, S.E. 2005. Fungivore hostuse groups from cluster analysis: patterns of utilisation of fungal fruiting bodies by ciid beetles. Ecological Entomology 30, 620–641.
- Palm, T. 1959. Die Holz- und Rindenkäfer der südund mittelschwedischen Laubbäume. Opuscula Entomologica Supplementum 16, 1–374.
- Quinn, G.P. & Keough, M.J. 2002. Experimental design and data analysis for biologists. 537 pp. Cambridge University Press, Cambridge.
- Reibnitz, J. 1999. Verbreitung und Lebensräume der Baumschwammfresser Südwestdeutchlands (Coleoptera: Cisidae). Mitteilungen Entomologischer Verein Stuttgart 1869 e.V. 34, 2–75.
- Ryman, S. & Holmåsen, I. 1984. Svampar, en fälthandbok. 718 pp. Interpublishing, Stockholm.
- SAS. 1989–96. version 6.12 pp. SAS Institute Inc, Cary, NC.
- Siitonen, J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins 49, 11–41.
- Tikkanen, O.-P., Martikainen, P., Hyvärinen, E., Junninen, K. & Kouki, J. 2006. Red-listed boreal forest species of Finland: associations with forest structure, tree species, and decaying wood. Annales Zoologici Fennici 43, 373–383.

Recieved: 19 December 2007 Accepted: 13 March 2008 Appendix. Poisson regression models for the 56 species occurring in more than 11 samples. p-values are shown for each variable (capital letters) based on the likelihood ratio statistics. For each category, numbers show the predicted odds to have an occurrence as compared to the reference category for each variable. These are AGE=Young, TREE=Spruce, DIAM=Thin and METHOD=Sack, unless otherwise noted.

Species Variable p-value Category Odds Species Variable p-value Category Odds Phloeocaris subtilissima Orthocis alni df error=736 Deviance/df=0.7445 df. error=736 Deviance/df=0.595 AGE 0.0001 DID 2.9 AGE 0.0001 DID 26.7 TRFF 0.0001 Aspen 4 TREE 0.2758 Aspen 14 Birch Birch 08 2.7 Oak 6.3 Oak 0.9 DIAM 0.1652 Coarse 1.7 DIAM 0.0006 Coarse 0.2 Medium 0.8 Medium 1.1 METHOD 0.0001 Box 0.11 Orthocis festivus Deviance/df=0.9984 Phloeopora corticalis df. error=560 Deviance/df=0.504 0 0001 Old df. error=288 AGF 23.3 AGE 0.7083 DID 1.2 TREE 0.0001 **Birch**^a 86 TREE 0.7015 Aspen 1.9 **Oak**^a 10.6 Birch 1.8 DIAM 0.0001 Coarse 3.4 Oak 1.3 Medium 4.2 DIAM 0.0548 Medium 2.3 METHOD 0.0001 01 Box ^a) Spruce is the reference Dadobia immersa df. error=736 Deviance/df=0.7401 Sulcacis affinis 0 0001 Deviance/df=8 689 AGF Old 52 df error=736 TREE 0.0005 Aspen 09 AGE 0.0001 Old 249.7 Birch 2.1 TREE 0.0001 Aspen 61.9 Oak 2.4 Birch 55.4 DIAM 0.5098 Coarse 0.6 Oak 13.3 Medium 0.9 DIAM 0.0001 Coarse 7.5 METHOD 0.0001 0.17 Medium 1.6 Box METHOD 0.0001 Box 0.4 Leptusa fumida df, error=736 Deviance/df=0.5747 Octotemnus glabriculus AGE 0.0001 Old df, error=736 Deviance/df=2.3289 3.9 TREE 0.0001 Aspen 5.8 AGE 0.0001 Old 168.9 Birch 4.8 TREE 0.0001 49.3 Aspen Oak 7.3 Birch 23.2 DIAM 0.9131 Coarse 0.8 Oak 7.4 Medium 0.9 DIAM 0.0001 Coarse 7.4 METHOD 0.0001 Box 0.03 Medium 2.7 METHOD 0.0001 Box 0 13 Leptusa ruficollis df, error=736 Deviance/df=0.4534 Synchita humeralis AGE 0.0012 Old 2.6 df. error=405 Deviance/df=1.5143 TREE 0.8914 0.9 AGE Aspen 0.0001 Old 4.1 Birch 08 TRFF 0 0001 Aspen^a 03 0.0225 Coarse 0.4 Oak 1 DIAM 2 Medium DIAM 0.6175 Coarse 1.3 Medium 1 **METHOD 0.0001** Box 0.3 METHOD 0.0001 Box 0.07 ^a) Birch is the reference

Appendi	x . continu	ed			Appendi	ix. continu	ed		
Species	Variable	p-value	Category	Odds	Species	Variable	p-value	Category	Odds
Anomogi	nathus cus	spidatus			Agrilus s	uvurovi			
•	df, error=	=736	Deviance	/df=0.6523	Ū.	df, error=	=172	Deviance	e/df=8.1772
	AGE	0.1239	Old	1.3		AGE	0.0001	Old	0.15
	TREE	0.0001	Aspen	97.8		DIAM	0.0001	Coarse	0.8
			Birch	13.4				Medium	3.8
			Oak	18.6		METHO	0 7706	Box	1.1
	DIAM	0.0001	Coarse	6				Don	
			Medium		Nemozoi	ma elonga	tum		
	METHO	D 0.0001	Box	0.06		df, error=		Deviance	e/df=0.5474
						AGE	0.457	Old	0.8
Lvaistopt	terus sang	uineus				TREE	0.0001	Oakª	0.12
	df, error=		Deviance	/df=0.5462		DIAM	0.1505	Coarse	0.6
	TREE	0.1014	Aspen	0.7				Medium	
			Birch	2.3		METHO	0 0 0 0 0 0	Box	0.11
			Oak	1.1			e is the ref		0.11
	DIAM	0.1599	Coarse	1.3		, epidot			
		0.1000	Medium		Dasytes	niaer			
	METHO	0 0246	Box	0.4	2009100	df, error=	=736	Deviance	e/df=0.4227
	ME INO	5 0.0240	DOX	0.4		AGE	0.0001	Old	72.1
Anthavia	quadripur	octata				TREE	0.0001	Aspen	0.5
ПППИЛИ	df, error=		Deviance	e/df=0.5227			0.0001	Birch	0.8
	AGE	0.4595	Old	0.7				Oak	0.3
	DIAM	0.0052	Coarse	3.5		DIAM	0.0001	Coarse	0.3
		0.0052	Medium				0.0001	Medium	
	METHO	0 0459	Box	0.2		METHO	٦ <u>0 1078</u>	Box	0.8
	METHOL	0.0400	DOX	0.2			50.1570	DOX	0.0
Chrysobo	otris affinis	5			Dasytes				
	df, error=	=359	Deviance	/df=1.2497		df, error=	=736	Deviance	e/df=0.3712
	AGE	0.0001	Old	0.03		AGE	0.0001	Old	3.4
	TREE	0.0001	Birch ^a	0.13		TREE	0.0001	Aspen	2.9
	DIAM	0.0001	Coarse	0.3				Birch	1
			Medium	0.5				Oak	2.7
	METHO	0.8726	Box	1		DIAM	0.0001	Coarse	0.08
	^a) Oak is	the refere	ence					Medium	0.5
	,					METHO	D 0.0001	Box	0.4
Agrilus a	ngustulus		_		_				
	df, error=			e/df=13.7756	Dasytes	plumbeus			
	AGE	0.01	Old	0.4		df, error=			e/df=0.2942
	DIAM	0.0007	Coarse	0.5		AGE	0.0001	Old	2.9
			Medium			TREE	0.0001	Aspen	0.3
	METHO	0.2008	Box	0.6				Birch	0.18
								Oak	1.1
Agrilus s	ulcicollis					DIAM	0.0001	Coarse	0.3
	df, error=	=126	Deviance	/df=3.1614				Medium	0.16
	AGE	0.0001	Old	0.16		METHO	0.0623	Box	0.7
	DIAM	0.0406	Coarse	2.9					
			Medium	2.8	Rhizopha	agus dispa	ar		
	METHO	D 0.3943	Box	0.7		df, error=		Deviance	e/df=0.2543
						AGE	0.0001	Old	5.2
Agrilus b	etuleti					TREE	0.0001	Aspen	8.5
3	df, error=	=229	Deviance	e/df=1.4116				Birch	19.6
	AGE	0.0001	Old	0.03				Oak	6.3
	DIAM	0.0001	Coarse	0.04		DIAM	0.0001	Coarse	3.6
		0.0001	Medium				0.0001	Medium	2.9
	METHO	0 0353	Box	1.5		METHO	0 0 0 0 0 0	Box	0.3
		2 0.0000	DOX				0.0001	DOX	5.0

Appendix. continued					Appendix. continued					
Species	Variable	p-value	Category	v Odds	Species	Variable	p-value	Category	Odds	
Lathridiu	s minutus				Bitoma c	renata				
	df, error=	736	Deviance	e/df=0.2135		df, error=	736	Deviance	e/df=0.7798	
	TREE	0.0001	Aspen	14.8		AGE	0.0001	Old	8.6	
			Birch	4.5		TREE	0.0001	Aspen	2.5	
			Oak	1.6				Birch	5.9	
	AGE	0.0005	Old	0.5				Oak	3.4	
	DIAM	0.0063	Coarse	0.3		DIAM	0.0001	Coarse	7.2	
			Medium					Medium	2.7	
	METHO	0.1666	Box	0.7		METHO	0.0001	Box	0.06	
Dienerell	a elongata	9			Schizotu	s pectinico	ornis			
	df, error=		Deviance	e/df=0.857	002010.	df, error=		Deviance	e/df=1.7812	
	AGE	0.7335	Old	1.1		TREE	0.0001	Aspen	29.4	
	TREE	0.0002	Aspen	2.6			5.0001	Birch	75.5	
		0.0002	Birch	2.5				Oak	42.4	
			Oak	0.3		DIAM	0.0001	Coarse	3	
	DIAM	0.0001	Coarse	22.6			5.0001	Medium	3.5	
	20,000	0.0001	Medium			METHO	0.0017	Box	0.5	
Cis hispi	dus				Corticeus	s linearis				
	df, error=	736	Deviance	e/df=6.1709	Controlation	df, error=	606	Deviance	e/df=0.4837	
	AGE	0.0001	Old	86.2		AGE	0.0001	Old	0.16	
	TREE	0.0001	Aspen	46.6		TREE	0.0001	Aspen ^a	0.10	
	INCE	0.0001	Birch	40.0 20.5		INCE	0.0001	Birch ^a	0.012	
							0 0007		1.1	
		0.0004	Oak	1.7		DIAM	0.0007	Coarse		
	DIAM	0.0001	Coarse	8.5			0.0004	Medium	2.6	
	METHO	0.4957	Medium Box	3.7 0.9		a) Spruce	0 0.0034 is the ref	Box erence	0.5	
Cia mia-	20				Mendell-	, ,				
Cis mica		726	Doutona	1df-0.2550	wordella	holomelea		Doviona		
	df, error=			e/df=2.3553		df, error=			e/df=0.8835	
	AGE	0.0001	Old	298.6		TREE	0.0001	Aspen	6.9	
	TREE	0.0001	Aspen	51.7				Birch	43	
			Birch	3.1			0.0406	Oak	30.3	
		0.0004	Oak	0.4		DIAM	0.0186	Coarse	0.4	
	DIAM	0.0001	Coarse	42.5		METHOR	0.0010	Medium	0.8	
	METHO	0.0225	Medium Box	1.7 0.3		METHO	0.0018	Box	2.4	
				-	Orchesia	undulata				
Cis bolet			D .			df, error=			e/df=1.3131	
	df, error=			e/df=5.7919		TREE	0.0001	Aspen	3.2	
	TREE	0.0001	Aspen	43.4				Birch	3.5	
			Birch	14.1				Oak	59.6	
			Oak	10.4		DIAM	0.0001	Coarse	2.4	
	DIAM	0.0001	Coarse	13.5				Medium	0.5	
			Medium	7.4		METHO	0.0004	Box	4.5	
	METHO	0.0001	Box	0.3	I anti-	nu odrifor -	ioto			
Cis punc	tulatus				Leptura (<i>quadrifasci</i> df, error=		Deviance	e/df=0.649	
	df, error=	108	Deviance	e/df=2.5543		TREE	0.0209	Aspena	0.3	
	DIAM	0.0012				DIAM		•	0.3 3	
		0.0012	Coarse	11.5		DIAIVI	0.123	Coarse		
	METUO	10.0460	Medium	6		METHO	10 1700	Medium	1.6	
	METHO	50.0102	Box	0.3		METHO	s the refer	Box	2.4	

Appendi	i x . continu	ed			Appendi	i x . continu	ed		
Species	Variable	p-value	Category	Odds	Species	Variable	p-value	Category	Odds
Molorchu	ıs minor				Saperda	scalaris			
	df, error=	=197	Deviance	e/df=0.5085		df, error=	=359	Deviance	e/df=0.482
	AGE	0.1553	Old	0.5		AGE	0.1931	Old	1.6
	DIAM	0.1033	Coarse	0.15		TREE	0.0165	Birch ^a	0.4
			Medium	0.7		DIAM	0.0007	Coarse	7.1
	METHO	D 0.2676	Box	0.6				Medium	8.4
						METHO	D 0.2203	Box	1.8
Xylotrech	hus rusticu	IS				^a) Oak is	the refere	ence	
	df, error=	=405	Deviance	e/df=0.6365					
	AGE	0.0001	Old	0.16	Allandrus	s undulatu	S		
	TREE	0.0001	Aspen ^a	45.8		df, error=	=736	Deviance	e/df=0.2528
	DIAM	0.0001	Coarse	183.9		AGE	0.0001	Old	0.04
			Medium	14		TREE	0.0001	Aspen	8.2
	METHO	D 0.1916	Box	0.5				Birch	4
	^a) Birch i	s the refer	ence					Oak	0.8
	,					DIAM	0.0001	Coarse	0.07
Clytus ar	rietis					20.00	0.000.	Medium	0.2
0.910.0 0.	df, error=	=182	Deviance	/df=0.55		METHO	D 0.3443	Box	0.8
	TREE	0.0001	Bircha	0.06			0.0110	Dox	0.0
	DIAM	0.0253	Coarse	0.5	Platystor	nus albinu	19		
	DIAN	0.0200	Medium	0.2	i latyotol	df, error=		Deviance	e/df=0.3502
	METHO	0 16/3	Box	2		AGE	0.0001	Old	5.2
		the refere		2		TREE	0.0001	Aspen ^a	0.5
) Oak is		ince			INLL	0.0001	Birch ^a	9.3
Plagiana	tuo orouot					DIAM	0.0001		9.3 0.11
Flagiono	tus arcuat		Deviener	/df-2 2260		DIAW	0.0001	Coarse	
	df, error=			e/df=3.2369		METHO	0 0 0 0 0 4	Medium	0.6
	AGE	0.0001	Old	0.04		METHO		Box	0.4
	DIAM	0.0001	Coarse	12.1		") Oak is	the refere	ence	
	METUO		Medium						
	METHO	D 0.0027	Box	0.3	Magdalis	violacea	407	D .	
_						df, error=			e/df=1.0225
Pogonoc	haerus fa					AGE	0.0001	Old	0.03
	df, error=			e/df=2.1382		DIAM	0.0017	Coarse	0.4
	AGE	0.0001	Old	0.03				Medium	
	DIAM		Medium			METHO	D 0.0753	Box	1.8
			klen	1					
	METHO	D 0.9291	Box	1	Magdalis	s carbonar			
						df, error=		Deviance	e/df=2.3956
Acantho	deres clav					AGE	0.0001	Old	0.04
	df, error=	=535	Deviance	e/df=0.3097		DIAM	0.0001	Coarse	0.12
	AGE	0.0001	Old	37				Medium	0.4
	TREE	0.0001	Aspen ^a	1.9		METHO	D 0.4523	Box	1.2
			Birch ^a	9.1					
	DIAM	0.0113	Coarse	2	Trachode	es hispidu:	S		
			Medium	1.9		df, error=	=443	Deviance	e/df=0.6253
	METHO	D 0.1307	Box	0.7		AGE	0.0001	Old	6.6
	^a) Oak is	the refere	ence			TREE	0.0001	Aspen	0.3
	,							Birch	4.7
Leiopus	nebulosus	;						Oak	7.3
	df, error=		Deviance	e/df=0.5259		DIAM	0.0001	Coarse	0.2
	AGE	0.0001	Old	0.13			0.0001	Medium	1.2
	TREE	0.0001	Birch ^a	0.09				mount	· · -
	DIAM	0.1586	Coarse	1.8					
		0.1000	Medium						
	METUO			0.9 7.2					
	METHO	the refere	Box	1.2					

^a) Oak is the reference

Jonsell: Saproxylic beetle species in logging residues

Appendi	x. continue	ed			
Species	Variable	p-value	Category	Odds	
Scolytus	intricatus	50	Devience	145-70 1 400	
	df, error= DIAM	52 0.7065	Coarse Medium	/df=73.1408 0.6	
	METHOD	0.2328	Box	0.5	
Pityogen	es calchog				
	df, error= DIAM	86 0.0687		/df=433.8005 0.5 1.5	
	METHOD	0.0001	Box	0.2	
Pityogen	es bidenta	tus			
	df, error= DIAM		Deviance Coarse		
	METHOD		Medium Box		
Pityphtho	orus microg	graphus			
	df, error= DIAM			/df=66.6317 1.1	
			Medium	3.9	
	METHOD	0.0001	Box	0.12	
Trypophle	oeus groth df, error=		Dovianaa	/df-20.2045	
	DIAM	0.0001	Medium	/df=20.3945 0.01	
	METHOD	0.0001	Box	395	
Crypturg		420	Dovionoo	/df-E 02E1	
	df, error= TREE	0.0001	Birch	/df=5.0351 0.3	
	AGE	0.0001	Old	31.7	
	DIAM	0.0001	Coarse Medium		
	METHOD	0.0056	Box	0.5	
Xyleboru	s dispar				
	df, error= TRFF	535 0.0001		/df=6.0477	
	IREE	0.0001	Aspena Bircha	0.004 0.04	
	AGE	0.0001	Old	0.09	
	DIAM	0.5634	Coarse Medium	0.6 1	
	METHOE ^a) Oak is	0.0001 the refere	Box	0.16	
Dryccost	es autogra				
Diyocoel	df, error=		Deviance	/df=0.9441	
	AGE	0.0001	Old	0.2	
	TREE	0.0001	Aspen Birch Oak	0.17 0.06 0.12	
	DIAM	0.0001	Coarse	16.4	
		0.3106	Medium Box	2.9 1.5	