Fauna norvegica Ser. B
Norwegian Journal of Entomology
Norsk Entomologisk Forenings tidsskrift

Appears with one volume (two issues) annually
Utkommer med to hefter pr. år.

Editor-in-Chief (Ansvarlig redaktør)

Editorial Committee (Redaksjonskomite)

Subscription
Members of Norsk Entomologisk Forening will receive the journal free. Membership fee N.kr. 90,- should be paid to the Treasurer of NEF: Lise Hofsvang, Brattvollveien 107, Oslo 11. Postgiro 5 44 09 20. Questions about membership should be directed to the Secretary of NEF, Trond Hovsfang. P.O. Box 70, N-1432 Ås-NLH. Members of NOF receive the journal by paying N.kr. 55,-. non-members by N.kr. 75,- to NZT, Zoological Museum, Sars gt. 1, N-Oslo 5. Postgiro 2 34 83 65. Outside Fennoscandia: Additional postage N.kr. 10,- per year (surface mail).

Abonnement

FAUNA NORVEGICA B publishes original new information generally relevant to Norwegian entomology. The journal emphasizes papers which are mainly faunistical or zoogeographical in scope or content, including checklists, faunal lists, type catalogues and regional keys. Submissions must not have been previously published or copyrighted and must not be published subsequently except in abstract form or by written consent of the Editor-in-Chief.

NORSK ENTOOMOLOGISK FORENING
ser sin oppgave i å fremme det entomologiske studium i Norge, og danne et bindeledd mellom de interesserte. Medlemskontingenten er for tiden kr. 90,- pr. år. Henvendelse om medlemskap i NEF sendes sekreteren: Trond Hovsfang, Postboks 70, 1432 Ås-NLH. Medlemmer får tidsskriftet fritt tilsendt og kan abonnere til redusert pris på FAUNA NORVEGICA serie A (generell zoologi, 1 hefte pr. år) for kr. 25,- og på serie C (ornitologi, 2 hefter pr. år) for kr. 50,-. Disse innbetalinger sendes til NZT, Zoologisk museum, Sars gt. 1, Oslo 5. Postgiro 2 34 83 65.

Trykket med bidrag fra Norges almenvitenskapelige forskningsråd. Opplag 800

Norsk zoologisk tidsskriftsentral (NZT) er et felles publiseringsoorgan for NEF og NOF i samarbeid med de zoologiske avdelingene ved universitetsmuseene i Oslo, Bergen, Trondheim og Tromsø.

Managing Editor (Administrerende redaktør)
Edvard K. Barth, Zoologisk museum, Sars gt. 1, 0562 Oslo 5.

Editorial Board (Redaksjonsråd)
Wim Vader, Tromsø, Svein Haftorn og John O. Solem, Trondheim, Rolf Vik, Oslo.

Kristiansen & Wøien, Oslo. ISSN 0332-7698

Professor Ole A. Sæther 50 years

Former editor of Fauna norvegica, Professor Ole A. Sæther, celebrated his 50th birthday recently. Since the event of his birthday coincides more or less with the 25 years anniversary of an extraordinarily active career, these days are an opportunity to see Sæther’s contributions to science in retrospect. For most of this time Sæther has been devoted to the study of chironomid midges (Diptera: Chironomidae).

The family Chironomidae has a worldwide distribution, comprising about 6000 known species. As a group it demonstrates an unusually wide range of ecological adaptations and many species are found in environments which may be considered at the limits of life. The larvae are predominantly aquatic and of major ecological significance in many kinds of water bodies. For this reason, studies of Chironomidae came to play an important role in the early development of limnology.

Sæther was born at Kristiansand on 9th December 1936. He obtained his first academic degree in 1960. From 1961 he was employed as a scientific assistant at the University of Oslo and continued his studies in the Department of Limnology. In 1963 he obtained the degree cand.real. with a voluminous dissertation treating the biology and environmental factors of the culturally eutrophied Lake Østensjøvann. Shortly afterwards he was promoted to University Lecturer, a position which he held until 1969. At that time, Sæther had already made his first research visit to North America. From 1967 he joined the Freshwater Institute of the Fisheries Research Board in Winnipeg, Canada, initially as a visiting scientist. In 1969 he was employed as a Research Scientist to do basic research on benthic communities, with particular reference to eutrophication problems. Here, in the Eutrophication Section of the Freshwater Institute, Sæther obviously benefited from a fertile scientific environment and became highly productive in writing publications. Several great monographs appeared from his hans during these years, most of them concerned with systematic revisions of ecologically important chironomid taxa. In 1977 Sæther was Professor by the University of Bergen. Since then he has been scientific Head of the Department of Systematics of the Museum of Zoology.

Although he may find the environment here less nourishing, at least when financial backup is concerned, Sæther has maintained a high production of scientific papers and his publication list presently includes more than 100 publications amounting to a sum of about 2500 printed pages.

The bulk of Sæther’s contributions to entomology are concerned with descriptive and analytical systematics. To date he has described and authored about 220 new taxa, predominantly chironomids, but also species of water mites (Hydracarina), phantom midges (Chaoboridae), shore flies (Ephyridae), caddis flies (Trichoptera), and chalcids (Hymenoptera). Most of these descriptions are not isolated, but parts of full revisions of genera and generic groups. Consequently the number of species described by Sæther is much higher and his descriptions usually include immature stages and both sexes of adult midges.

Sæther’s generation of chironomid students inherited a systematics which was virtually constituted by two poorly integrated taxonomic systems. One system stemmed from entomologists and was based on adult midges, the other from limnologists based on immature stages. The results of an intensive, but perhaps less coordinated research on chironomids was an inconsistent systematics which must have been extremely confusing and discouraging to deal with, especially for those who wanted to take up studies of chironomids for the first time. It is on this background that Sæther’s merits must be evaluated. In the process of elaborating an integrated systematics on the Chironomidae he has submitted several major contributions, generally in series of large monographs.

Sæther early adopted the ideas developed by W. Hennig and phylogenetic systematics became his conceptual framework as well as his working methodology. The general scope of phylogenetic systematics is to elaborate classifications based on monophyletic groups which in turn give hypotheses on the actual course of cladistic evolution. This seemed to be the only way to deal with the problems.
derived from more or less intuitive classifications, in which adult and immature stages of taxa may appear to show different phyletic affinities. The method requires a great number of characters to be studied. Consequently, Sæther's descriptions include a large array of character statements and his papers taken together are an extraordinary loaded series of data. The value of these data is further increased by their mostly homogenous and consistent presentation.

Cladistic analysis means searching for evolutionary trends and interpretation for each cladogenetic level which characters are primitive (plesiomorphic) or derived (apomorph). In one major opus after another Sæther presented resolved cladograms from large and complicated data matrices. Of particular importance was his classification of chironomid subfamilies where, for the first time in chironomid systematics, the information displayed by female adult morphology was used in classification. Sæther had prepared the ground himself to make this possible. In a study of female genitalia, he described and figured more than 200 species of chironomids and other nematocerous Diptera and he outlined a terminology of female genital structures. When he presented this broad comparison of morphological differentiation of female genitalia, two major achievements were made. First, it revealed good prospects for the possibility of identifying the previously neglected chironomid females and nowadays, descriptions of females generally form an integral part of chironomid species descriptions. Secondly, new sets of characters were available to be used in cladistic analyses. The impact of this on chironomid systematics was significant, resulting among other things in a reevaluation of the relationship between chironomid subfamilies.

Another work of significant impact on chironomid systematics was Sæther's glossary to chironomid morphological terms. This compilation of terminology with recommended terms and their synonyms has certainly made life easier for the chironomid systematist and the paper was an important step towards standardization and homogenization of chironomid descriptions. This particular work together with the recently elaborated keys to the Holarctic genera of chironomids, to which Sæther has made significant contributions, will probably give a greater number of entomologists and freshwater biologists access to and guidance through the labyrinths of chironomid systematics.

Although the study of systematics is an autonomous discipline and has become a full time commitment in itself for Sæther, he has not forgotten his basic training as a limnologist and his initial motivation for entering into systematics. The «Seetypen Lehre» developed by Thienemann and his followers culminated when Sæther in 1979 published his more refined means of characterizing trophic levels of lakes from the composition of their chironomid communities. To the extent that these methods have been used they have sometimes proved to be more informative than physio-chemical analyses in detecting ecological changes and sources of pollution.

Through his detailed studies of a great variety of chironomid groups, Sæther has reached a level of overview as well as detailed insight into manifestations of evolutionary differentiation that probably few systematists share with him. His experience derived from analyses of morphological variation in a highly complex taxon and his practical application of phylogenetic systematics has made him believe that the interpretation of apomorphies and plesiomorphies is less straightforward than originally anticipated in phylogenetic theory. Accordingly, in several of his more recent publications he has advocated the idea of «underlying synapomorphism», a concept introduced by L. Brundin as «inside parallelism». He has also defined what he considers a necessary distinction between «objective synapomorphies» and «subjective synapomorphies». Objective synapomorphies more or less correspond to the orthodox definition of synapomorphies. Underlying synapomorphies behave in an analogous manner to recessive genes and are regarded as a potential capacity to develop a certain character. These ideas are controversial among adherents of phylogenetic systematics and by raising them Sæther has provoked dispute and theoretical confrontation in international journals. Nevertheless, the issues focused here by Sæther are undoubtedly of great importance in clarifying the theoretical basis of any attempts to reconstruct coherent phylogenetic systems. Sæther claims that all kinds of character sets must be taken into account in the total evaluation of genealogical relationships between taxa. Although one may disagree with his conclusions, his way of pre-
senting and systemising these character sets, including conflicting evidence, is the strenght of his methodology.

Sæther has been an active participant in many international meetings on systematics, phylogenetics and freshwater ecology. He has contributed to the arrangement of symposia and congresses, recently as chairman of the organizing committee of IXth International Symposium of Chironomidae held at Bergen.

Endre Willassen

LIST OF PUBLICATIONS

Sæther, O. A. 1966. Hydrachnellae from North Boulder Creek, Colorado, with descriptions of Spcrchon glandulosus coloradensis n. subsp. and Lebertia (Pseudolebertia) atelodon n. sp. Arch. Hydrobiol. 61, 500–514.

Sæther, O. A. 1967. Descriptions of Lasiodiamesa bipectinata spec. nov. and Parochlus kiefferi (Garrett) Brundin. (Diptera:)

Sæther, O. A. 1975. Two new species of Heterota­nyius Spärck, with keys to Nearctic and Palaeartic males and pupae of the genus (Diptera:

Contribution to the knowledge of the Norwegian Lepidoptera II

LEIF AARVIK

Teleiodes sequax (Haworth, 1828) and Pyrausta ostrinalis (Hübner, 1796) are deleted from the Norwegian list. Further information on Rhyacionia logaea Durrant, 1911 and Acerbia alpina (Quensel, 1802) in Norway are given. The following species are reported new to Norway; Tinea bothniella Svensson, 1953, Elachista triatomea (Haworth, 1828), Amphilbatis incongruella (Stainton, 1849), Agonopterix astrantiae (Heinemann, 1870), Pexicopia malvella (Hübner, 1805) Psoricoptera speciosella Teich, 1892, Leioptilus lienigianus (Zeller, 1852), Schoenobius gigantella (Denis & Schiffermüller, 1775) and Mesapamea secalella Remm, 1983.

Leif Aarvik, Nyborgveien 19 A, N-1430 Ås, Norway.

INTRODUCTION

Examination of Lepidoptera material in museums and private collections has shown that Teleiodes sequax (Hw.) and Pyrausta ostrinalis (Hb.) should be deleted from the Norwegian list. The distributions in Norway of three pairs of sibling species, viz. Psoricoptera gibbosella (Zell.), P. speciosella Teich and Rhyacionia duplana (Hb.), R. logaea Durr. and Mesapamea secalis (L.), M. secalella Remm are discussed. In addition seven species are reported new to Norway and details of the Norwegian record of Acerbia alpina (Quens.) are given. Latin names on plants are according to Lid (1974). The EIS-grid numbers are mentioned only after the first locality when there are records from more than one locality in a square.

Species deleted from the Norwegian list

Gelechiidae: Teleiodes sequax (Haworth, 1828)

This species was recorded new to Norway by Grønlien (1937) from AAY, Risør; but no material exists among Grønlien’s Lepidoptera at the Zoological Museums in Oslo and Bergen. Mehl (1973) recorded sequax from MRI, Kvanne, but Opheim (1979a) stated that this specimen was misidentified and belonged to Teleiopsis diffinis Haworth. T. sequax figures as Norwegian in the lists by Krogerus et al. (1971) and Opheim (1978). The food-plant of sequax is Helianthemum which does not grow in Norway. As no material of sequax is present in Norwegian collections, and it is very unlikely to occur here, it should be deleted from the Norwegian list.

Pyralidae: Pyrausta ostrinalis (Hübner, 1796)

The name ostrinalis has been used in the Norwegian literature for a long time either as a form of Pyrausta purpuralis (Linnaeus, 1758) e.g. Schøyen (1893), Haanshus (1933) or as a distinct species (Krogerus et al. 1971, Opheim 1975).

Examination of specimens present under the ostrinalis label at the Zoological Museum in Oslo, showed that they all belonged to purpuralis. Similarly no ostrinalis specimens could be found at the Zoological Museum in Bergen (A. Fjeldå pers. comm.) or in any private collection. Consequently ostrinalis should be deleted from the Norwegian list.

Species new to Norway

Under this heading eight species new to Norway and two species which have been recorded previously, but without precise data, are treated.

Tineidae: Tinea bothniella Svensson, 1953

Recently Mr. Reidar Mehl showed me the genitalia of a male Tinea species which in
1984 had attacked old woolen garment in a museum at HEN, Tynset: Tynset (EIS 80). The garment was kept in a house which was not heated. The genitalia belonged to Tinea bothniella Svensson which is new to Norway. T. bothniella is distributed in Sweden (Västerbotten, Norrbotten, Lule Lappmark) (Gustafsson 1980), Finland (from Turku in the south to Ostrobotnian borealis in the north), USSR eastward to S. Siberia and Mongolia (Kyrki 1978, Robinson 1979).

Previously raptor pellets is the only food-stuff reported for this species (Robinson 1979).

Wings and genitalia of bothniella and related species are figured by Robinson (1979).

Elachistidae: Elachista triatomea (Haworth, 1828)
AK, Bærum: Østøya (EIS 28) ♂ 15 June 1985 L. Aarvik leg. The specimen was netted in the evening.

E. triatomea is distributed in N. and C. Europe. In Sweden it has been found northwards to Dalarne and Uppland, in Finland it is known from the Aland islands (Traugott-Olsen & Nielsen 1977).

Figures of wings and genitalia and information on the biology are given by Traugott-Olsen & Nielsen (1977).

Oecophoridae: Amphibsatis incongruella (Stainton, 1849)
Ø, Hvaler ♂ E. Strand leg. The specimen was discovered by Ole Karsholt in material of Elachistidae on loan from the Zoological Museum in Bergen. The specimen was only labelled «Hvaleørne, Strand». It must have been collected in spring 1900 or 1902 (Strand, 1901, 1904).

In Sweden A. incongruella has been collected north to Södermanland (Gustafsson 1980), in Denmark it is widely distributed in Jutland, and there is one locality in North East Zealand (Palm 1978). Otherwise in C. Europe including Britain, and Spain (Jacobs 1978).

The habitat is moors where the larva which lives in a case feeds on various herbs, especially heather (Jacobs 1978, Palm 1978). The species’ wings are figured by Jacobs (1978) and Palm (1978). Palm (1978) also figures the genitalia.

Agonopterix astrantiae (Heinemann, 1870)
MRY, Molde: Sekken (EIS 77) ♂ Aug. 1980. T. Andersen leg., O. Karsholt det. The specimen was found by O. Karsholt in light trap material.

In Sweden this species has been collected from Skåne to Uppland (Gustafsson 1980), in Finland on the Aland islands only (Kyrki 1978). Otherwise in Denmark and C. Europe including England (Palm 1973, Jacobs 1978).

The food-plants of the larva are Astrantia major or Sanicula europaea (Palm 1973, Jacobs 1978). Judging from the distribution (Lid 1974), the latter is probably the food-plant in Norway.

Wings and genitalia are figured by Palm (1973).

Gelechiidae: Pexicopia malvella (Hübner, 1805)
AK, Ås (EIS 28) ♂ 18 July 1985 L. Aarvik leg. The specimen was captured in a light trap.

P. malvella is distributed from Skåne to Gästrikland and Dalarne in Sweden (Gustafsson 1980). It is widespread in S. Finland (Kyrki 1978). In Denmark it is now spreading and is known from four SE districts (O. Karsholt in litt.). Otherwise in S. and C. Europe including Britain (Sattler 1960).

The larva feeds on the seeds of various Malvaceae (Emmet 1979). The genitalia are figured by Sattler (1960).

Psoricoptera speciosella Teich, 1892
dia is the type locality, Livonia, in the Baltic part of the USSR (Teich 1892).

P. speciosaella differs from the related P. gibbosella (Zeller, 1839) by the absence of reddish colour in the forewing. The differences between the two species in the male genitalia pointed out by Svensson (1982) do not hold. There are too much variation in both species. O. Karsholt has informed me that he could not find any difference between gibbosella and speciosaella in the female genitalia. Thus the taxonomic status of speciosaella needs further study.

The record of gibbosella by Opheim (1978, 1979 b) represent speciosaella (K. Berggren pers. comm.). Still gibbosella is also a member of the Norwegian fauna. I have seen the following Norwegian specimens: 0, Rygge: Sildebauen (EIS 19) 5 23 July 1980 L. Aarvik leg.; AAY, Grimstad: Groos (EIS 6) 5 30 Aug. 1982 C.F. Lühr leg.; VAY, Kristiansand: Stangenes (EIS 2) 5 12 Aug. 1978 L. Aarvik leg.

Both species occur sympatrically in some localities in S. Norway.

The food-plant of speciosaella is Salix. The food-plant of gibbosella is Quercus, exceptionally Salix (Benander 1928, O. Karsholt pers. comm.).

Tortricidae: Rhyacionia logaea Durrant, 1911

Ø, Fredrikstad: Fredrikstad (EIS 20) 5 (no date) E. Strand leg.; AK, Berum: Sandvik (EIS 28) 5 April 1922 E. Barca leg.; AK, Ås: Nesset 5 10 May 1985 L. Aarvik leg.; HES, Elverum: Løkting (EIS 55) 6 9 May 1981 L. Aarvik leg.; BØ, Hurum: Rodtangen (EIS 28) 9 16—17 April 1982 L.O. Hansen leg.; BØ, Kongsberg: Mildigiet (EIS 27) 3 9 May 1979 S. Bakke leg.; VE, Notterøy: Herstad (EIS 19) 6 April 1984 A. Fjeldså leg.; AAY, Tromøy: Bjelland (EIS 6) 4 15—17 April 1976 S. Bakke leg.; AAY, Tvedestrand: Laget (EIS 11) 5 20 April 1922 N. Knaben leg.; VAY, Kristiansand: Kuholmen (EIS 2) 5 30 April 1980 K. Berggren leg.; HOY, Os: Gåssandvann (EIS 31) 5 9 April 1967 A. Fjeldså leg. Owing to difficulties with identification, females are excluded from the list. According to Benander (1946) there is a specimen of logaea from Dovre present at the Zoological museum in Lund. The specimen was probably collected by Boheman who visited Dovre and the adjacent Gudbrandsdalen. Until recently R. logaea has been treated as a form of R. duplana (Hübner, 1813) by most authors. Obraztsov (1964) found no difference between duplana and logaea in the genitalia and treated logaea as a subspecies of duplana. However, there is a constant difference in the male antennae: The cilia in logaea are twice as long as in duplana. There are also small differences in the forewing markings of the males. The females are very difficult to separate. The male antennae and forewings of the two species are figured by Buhl et al. (1983). Winter (1981) found differences in the larvae of the two species. In many areas in Scandinavia duplana and logaea occur sympatrically, and this also speaks for the distinctness of the two species.

In Sweden R. logaea is distributed north to Västerbotten and duplana to Lycksele Lapmark (Gustafsson 1980). Both species occur in Finland (Krogerus et al. 1971). In Denmark duplana occurs in most districts, whereas logaea has only been collected in a small area in N. Zealand (Buhl et al. 1983). Otherwise logaea occurs in France and Scotland (Obraztsov 1964).

In Norway duplana is less common than logaea, but the following specimens have been collected: AK, Oslo: Fjeldstuen (EIS 28) 5 10 April 1854 L.M. Esmark leg.; AK, Ås: Ås 5 19 April 1983 L. Aarvik leg.; HES, Elverum: Damtjern (EIS 55) 5 10 May 1981 L. Aarvik leg.; VAY, Mandal: Bjelland (EIS 5) 15 May 1980 K. Berggren leg.; VAY, Marnardal: Bjelland (EIS 5) 5 18 May 1980 K. Berggren leg. The females are not included owing to difficulties with identification.

R. duplana is distributed from N. and C. Europe (excluding Britain) through the USSR to Japan (Bradley et al. 1979). The larva of both species feed in the buds and shoots of various Pinus species.

Pterophoridae: Leiioptilus lienigianus (Zeller, 1852)

Ø, Rygge: Sildebauen (EIS 19) 5 23 July 1985 L. Aarvik leg. The specimen was captured in a light trap.

In Sweden this species has been collected in Skåne, Öland and Gotland only (Gustafsson 1980). Otherwise in S. Finland (Kyri...
1978), all over Europe and in parts of Asia and Africa (Hannemann 1977).

The larva feeds chiefly on *Ariemisia vulgaris* (Hannemann 1977). The genitalia are figured by Hannemann (1977).

Pyralidae: *Schoenobius gigantella* (Denis & Schiffermüller, 1775)

AK, Ås: Nesset (EIS 28) ♂ 5—14 July 1984 L. Aarvik leg. The specimen was captured in a light trap.

In Sweden *S. gigantella* has been collected north to Västmanland (Gustafsson 1980), in Finland north to Ostrobottnia media (Kyrki 1978). Otherwise in Denmark (Krogerus et al. 1971), C. Europe and E. Asia (Hannemann 1964).

The larva feeds on *Phragmites* (Hannemann 1964). The Norwegian locality is close to a lake with rich growth of *Phragmites*. *S. gigantella* is figured by Hannemann (1964).

Arctiidae: Acerbia alpina (Quensel, 1802)

Aagaard (1979), Linnaluoto & Koponen (1980) and Sotavalta et al. (1980) mention that *Acerbia alpina* has been collected in N. Norway without giving details of the record. Prof. Olavi Sotavalta has kindly furnished more information. The Norwegian specimen was captured by N. Outakoski and published as a note in the Finnish newspaper Pohjolan Sanomat (Outakoski 1972). The locality is FN, Tana: near the outlet of Levajokka (EIS 175), regio alpina, and the date was last week of June 1972.

A. alpina is a great international rarity, occuring in the arctic parts of both the Old and the New World. Outside Fennoscandia it has been collected in Siberia, N. Mongolia, Alaska and arctic Canada. The type specimen was captured in Enontekiö, Finland in 1799, and it was not rediscovered in Europe until 1962 on the mountain Saana in the same district. From 1962 onwards several imagines, larvae and pupae have been collected in Enontekiö (Sotavalta 1962, Sotavalta et al. 1980). In 1980 the species was recorded for the first time in Sweden: A cocoon was found on the mountain Nissuntjärrro in Torne Lappmark (Hellberg 1981).

The biology of *A. alpina* is dealt with in detail by Sotavalta et al. (1980). They also show photos of the early stages. The biotope is the treeless tundra or above the timberline in mountains. The larva is polyphagous and usually hibernates once. The life cycle may take many years if several cold summers occur in succession.

The moth is figured by Sotavalta (1962), Sotavalta et al. (1980) and in colour by Gullander (1963).

Noctuidae: Mesapamea secalella Remm, 1983

Fig. 3. The distribution of *Mesapamea secalis* (L.) and *M. secalella* Remm in Norway. Dots denote records of *secalis*, circles denote records of *secalella* and half-filled circles denote records of both species.

Remm (1983) demonstrated the existence of a previously unrecognized species which had been confused with the common *Mesapamea secalis* (Linnaeus, 1758). He named the new species *Mesapamea secalella*. Remm's material was from the USSR: Estonia.

Subsequent research by lepidopterists in various countries showed that *secalella* has a wide distribution in Europe. It has so far been reported from Sweden, Finland, Denmark, USSR, England, Scotland, Ireland, W. Germany, Netherlands, Belgium, France, Spain, Switzerland, Austria, Hungary, Czechoslovakia, Bulgaria and Romania (Fibiger et al. 1984, Gyulai 1984, Rezbanyai-Reser 1984, Skinner 1984). In Sweden there are verified records of *secalella* northwards to Uppland and Dalarn (Palmqvist 1984, 1985), in Finland *secalella* has been collected in one province on the south coast only (Fibiger et al. 1984) and in Denmark the moth has been found all over the country (Fibiger in litt.). Fig. 3 gives the distribution of *secalis* and *secalella* in Norway. Only verified records of both species are included. It has not been possible to examine all specimens present in Norwegian collections, so the map must be considered as preliminary.

The male genitalia of *secalis* and *secalella* are figured by Remm (1983), Fibiger et al. (1984) and Palmqvist (1984). Rezbanyai-Reser (1984) figures the genitalia of both sexes. So far no distinguishing external character has been found. *M. secalella* varies along the same lines as *secalis*. Norwegian specimens of *secalella* are on the average smaller than *secalis* and with less contrasting pattern on the forewing. Both species occur in the same habitats.

Acknowledgements

I am particularly indebted to Ole Karsholt, Copenhagen, who discovered and identified the specimens of *Amphisbatis incongruella* and *Agonopterix astrantiae*. I thank the following persons for information and loan of material: Kaare Aagaard, Trond Andersen, Alf Bakke, Kai Berggren, Geir Ellefsen, Michael Fibiger, Jac. Fjeldalen, Arild Fjeldså, Lars Ove Hansen, Kjell Arne Johanson,
REFERENCES

Ottar 113–114, 1–68.

Grønlien, N. 1937. Tillegg til Norges Lepidoptera.

Gustafsson, B. 1980. Förteckning över Sveriges småfjärilar. (Duplicated list).

Ent. Tidskr. 102, 75–76.

Winter, T.G. 1981. The larva of *Rhyacionia duplana logaea* Durrant (Lepidoptera: Tortricidae) described and compared with *R. duplana duplana* (Huebner) and *R. simulata* (Heinrich) *Entomologist’s Gaz.* 32, 233—242.

Received 13. Jan. 1986
Occurrence and life cycle of *Dinocras cephalotes* (Curtis, 1827) (Plec. Perlidae) in North Norway

HELGE HURU

Dinocras cephalotes (Curtis 1827) was registered very locally in tributaries of the rivers Reisa and Lakselv and in the River Alta in northern Norway. Suitable habitats for the nymphs seem to be very scarce in these rivers.

D. cephalotes has probably a 4 to 5 year life cycle in Alta River. Growth took place only during two to three months each year.

It is supposed that *D. cephalotes* had a wider distribution in postglacial times being connected to the southern Scandinavian populations and that the more recent colder climate has separated the northernmost populations from the southern ones.

Helge Huru, University of Tromsø, Tromsø Museum, N-9000 Tromsø, Norway.

INTRODUCTION

The carnivorous stonefly *Dinocras cephalotes* (Curtis, 1827) is widespread in central and western parts of Europe (Illies 1978, Zwick 1981). In central Europe it occurs mainly in mountain streams and rivers (Schoenmund 1925, Kuhtreibe 1934, Aubert 1946). The species is common in continental parts of southern Norway and Sweden (Brinck 1949, Lillehammer 1974), but has only been registered in three rivers in western Norway (Lillehammer 1974, Hermansen 1979). In Scandinavia *D. cephalotes* is common north to 66° N (Brinck 1949, Ulfstrand 1968b, Lillehammer 1974, Koksvik 1976), and is registered very sporadic north of 66° N, Fig. 1 (Thomas 1969, Lillehammer 1974). It has not yet been found in Finland (Meinander 1980). High temperature requirements to initiate egg development (Lillehammer 1986) limit its occurrence in northern latitudes.

This paper deals with the distribution and life cycle of *D. cephalotes* in the northernmost part of Norway.

MATERIAL AND METHODS

Bottom fauna were collected in twenty watercourses in northern Norway (Fig. 1, 2) between 1978—1984, using the standard travelling kicking method (STKM, Pollard 1981). Aquatic invertebrates were collected with a net which usually had mesh size 500 μm. In Alta River, a net with mesh size of 250 μm were used. In the localities, several abiotic and biotic parameters were measured. In Alta River, nymphs were sampled four to five times/year over three years. In the rivers Lakselv and Reisa, nymphs were sampled

Fig. 1. The distribution of *Dinocras cephalotes* in Fennoscandia.

Triangles: New records of *D. cephalotes*.

Investigated area shaded.
twice a year over a period of one or two years. The nymphs were preserved in 80% alcohol prior to analysis. The width of the pronotum was measured using a Wild M 5 stereo microscope and a M 5 drawing tube. The pronotum was measured to the nearest 0.05 mm for small nymphs and 0.1 mm for larger nymphs. Low densities of *D. cephalotes* gave low number of collected individuals, and this makes the interpretation of the data for life cycle prediction difficult. Seventy-six nymphs from Alta river were measured. In the rivers Reisa and Lakselv, thirty-one and twenty-two nymphs were collected, they were not used in the prediction of life cycle.

No adults were caught despite being looked for in the surrounding vegetation and ground.

RESULTS

Distribution

D. cephalotes was found only in the three rivers Lakselv, Alta and Reisa (Fig. 1, 2) of the 20 rivers sampled. Its distribution in the rivers was very restricted, and the species was found at only two localities in each river.

D. cephalotes was seldom the predominant Plecoptera in any of the samples. Carnivorous Plecoptera e.g. *Diura nanseni* (Kempny) and partly *Archynopteryx compacta* (Mc Lachlan) and *D. cephalotes* were usually numerous in most samples in addition to one or two Leuctrid or Capniid species. The dominating species of Ephemeroptera was *Baetis rhodani* (Pictet) sometimes accompanied by other *Baetis* species. The dominating taxa in the bottom fauna was Ephemeroptera and Chironomidae.

The localities where *D. cephalotes* occurred in the watershed of the rivers Lakselv and Reisa were small streams (becks), while *D. cephalotes* was an inhabitant of Alta River itself. All localities lie in narrow valleys with vegetation of birch and willow, in the middle boreal (Alta) or north boreal vegetation zone (Dahl et al. 1986), where maximum water temperature can exceed 16°C.

The life cycle

Information on the life cycle was obtained through analysis of the nymphal stages from Alta River. Small nymphalae occurred in May—July, and they grew very little during the first summer. The nymphs had a very slow growth. Most of the growth took place in two to three months in the warm season during a year, Fig. 3. Different sizes of nymphs were registered during the whole ice-free season (Fig. 3). Three to five size groups were found at most of the sampling times. Fullgrown

Fig. 2. Records of *D. cephalotes* in northernmost Norway.

Triangles: New records.

Circles: Earlier records.

Shaded area shows the investigated area.

1: Reisa river. 2: Alta river. 3: Lakselv river. 4: Tana river.

Fig. 3. Measurements of nymphs of *D. cephalotes* from Alta river in 1980 to 1981, with standard deviations.

nymphs were found during the whole ice-free season. The sampling gave no information about emergence times. Brinck (1949) indicated July—August as flight periods in continental parts of Sweden. Ulfstrand (1968a) registered winged specimens mainly in July. The size groups of *D. cephalotes* in Fig. 3 indicate a life cycle of 4 to 5 years.

DISCUSSION

Aquatic invertebrates have been sampled in a great number of rivers and streams in northern Norway during the last few years (Fig. 1, 2) (Lillehammer 1974, Huru 1980 a, b, 1981 a, b, c, d, 1982, Eie, Brittain & Huru 1982, Huru 1984), but the distribution of *D. cephalotes* was restricted to a few localities in the four rivers Tana, Lakselv, Alta and Reisa (fig. 1, 2). The gap between the northernmost populations and those in more southern areas indicates that the populations of *D. cephalotes* in the northernmost part of Norway are geographically separated from the main southern populations.

D. cephalotes has a southern distribution, preferring stony streams and becks, and streams in areas with continental climate (Hynes 1941, Ulfstrand 1968 a, Illies 1978). In Norway, it seldom occurs in coastal areas (Lillehammer 1974, Hermansen 1979). *D. cephalotes* has not been recorded in the alpine vegetation zone (Lillehammer 1986), which co-

<table>
<thead>
<tr>
<th>Month</th>
<th>Size group</th>
<th>n</th>
<th>x</th>
<th>SD</th>
<th>Month</th>
<th>Size group</th>
<th>n</th>
<th>x</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>I</td>
<td>2</td>
<td>0.45</td>
<td>-</td>
<td>June</td>
<td>I</td>
<td>5</td>
<td>0.35</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>4</td>
<td>1.0</td>
<td>0.22</td>
<td>II</td>
<td>2</td>
<td>1.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>1</td>
<td>2.2</td>
<td>-</td>
<td>III</td>
<td>1</td>
<td>2.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>1</td>
<td>5.6</td>
<td>-</td>
<td>VI</td>
<td>3</td>
<td>4.9</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>I</td>
<td>5</td>
<td>0.42</td>
<td>0.10</td>
<td>August</td>
<td>I</td>
<td>2</td>
<td>0.60</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>2</td>
<td>1.0</td>
<td>-</td>
<td></td>
<td>III</td>
<td>3</td>
<td>1.5</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>1</td>
<td>5.8</td>
<td>-</td>
<td></td>
<td>IV</td>
<td>4</td>
<td>3.7</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td>5</td>
<td>5.7</td>
<td>0.33</td>
</tr>
<tr>
<td>Sept.</td>
<td>I</td>
<td>6</td>
<td>0.90</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>2</td>
<td>2.0</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>12</td>
<td>4.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>10</td>
<td>5.6</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Measurements of the width of pronotum on different size groups of *Dinocras cephalotes* from Alta River, collected in 1980—1984.
vers a large area in the northern part of Fennoscandia. The records in this paper was in the middle boreal (Alta) or north boreal vegetation zone. Hynes (1941) found *D. cephalotes* most common in places where the substratum was stable and moss-covered. Malmquist & Sjøstrøm (1984) found the microdistribution of *D. cephalotes*, among other parameters, positively correlated to high densities of prey (Chironomidae) and the presence of moss. All localities in this study were sparsely moss-covered. The density of Chironomidae was high in Alta. The localities in northern Norway were *D. cephalotes* was present had several similarities: Stony, stable bottom, sparse plant-cover, fast running water, continental climate, they all laid maximum 7 km below upstream lakes and in narrow valleys with forests, and air and water temperatures can be high, even in cold summers. Which one of these factors are most important is difficult to say.

Lillehammer (1986) supposed that the distribution of *D. cephalotes* is restricted by temperature. The upstream lakes may act as heat reservoirs and thereby ensure sufficient thermal sums during the summer. A continental climate gives higher sum of day-degrees in these valleys than do coastal or mountain areas in the same region. In Alta River, for instance, the sum of daydegrees in 1981 varied from 1360 in lower parts to only 460 day degrees in the uppermost becks (Traaen 1983).

In a population from southern Norway, eggs of *D. cephalotes* required near 12°C to initiate egg development and about 780 day degrees to hatch (70—80 days at 12°C) (Lillehammer 1986). The sum of degree days at the actual locality in Alta River in 1981 was 740 with temperature > 10°C. Even if these northern populations have lower temperature requirements, the number of habitats where *D. cephalotes* can survive in northern Norway is very limited. *D. cephalotes* has not been registered in Finland and other factors than water temperature and thermal sums is also important for its occurrence, i.e. vegetation cover, prey items (Malmquist & Sjøstrøm 1984), water chemistry and oxygen regime (*D. cephalotes* has external gills).

The occurrence of *D. cephalotes* in the northernmost Norway seems to be a result of its ecological requirements and changes in climate in postglacial time. The species survives in very few localities in northern Norway where its ecological requirements still exist. These populations are probably very sensitive to disturbance, maybe even to smaller changes in general climate.

The genus *Dinocras* is endemic in Europe. Pleistocene refuges are known to have existed in the Mediterranean area, and *D. cephalotes* (among other Plecoptera species) have reached other parts of Europe in postglacial time from these (Zwick 1981). Brinck (1949) supposed that *D. cephalotes* immigrated from Germany via Denmark in early postglacial time. Since the last deglaciation there have been a few warm periods in northern Norway, and for instance pine (*Pinus silvestris*) had maxima in occurrence during these periods (Vorren 1977, Vorren & Alm 1984). Pine was also more widespread in the valleys Tana, Alta and Reisa. The pine here was connected to the Finnish pine forests (Jul 1925, Hustich 1966). It is also reasonable to suppose that *D. cephalotes* was more widespread than today in these valleys. As the climate became colder and wetter, the areas in which *D. cephalotes* could survive decreased in size, and, in time, the northern populations became separated from the southern ones. It is also possible that *D. cephalotes* almost disappeared under these cold periods, and a new colonization has occurred during the last centuries.

D. cephalotes is one of the few plecopteran species with a life cycle longer than two years (Brinck 1949, Hynes 1941). Hynes (1941) found that, at 15°C, eggs needed ca. 100 days to hatch, while Lillehammer (1986) found incubation time from 70—80 days (12°C) to 35 days (20°C). In South Sweden nymphs emerge in June—July 3 years after eggs were laid (Brinck 1949). Also in more southern areas, *D. cephalotes* has a three-year life cycle (Schoenmund 1925, Hynes 1941, Brinck 1949, Hynes 1977). Ulfstrand (1968a) proposed a possible four-year life cycle for the populations in the mountains of Middle Sweden. It is thus not surprising that the life cycle in northernmost Norway may reach 4—5 years.

The long life cycle and preference for temperate water, indicates that the ecological niche of *D. cephalotes* is narrow. The very limited geographical distribution in northernmost Norway can be explained by a low number of suitable habitats, where low water temperatures is an important factor.
LITTERATURE

Ulfstrand, S. 1968 b. Benthic animal communities in Lapland streams. Oikos, Suppl. 10, 1—120.

Received 13 Jan. 1986
Brachycaudus spp. new to the Norwegian fauna (Homoptera: Aphididae)

CHRISTIAN STENSETH

The present paper gives biometric data and describe records of Brachycaudus (Acaudus) populi (de Guerico) and B. (Thuleaphis) sedi Jacob from Norway. The until now unknown fundatrix of B. (A.) populi is described.

Christian Stenseth, Norwegian Plant Protection Institute, Div. of Entomology, P.O. Box 70, N-1432 Ås-NLH, Norway.

Nine species of the genera Brachycaudus van der Goot are reported from Norway (Ossian-nilsson, 1969, Tambs-Lyche, 1970). This paper gives informations about further two Brachycaudus species found.

Brachycaudus (Acaudus) populi (Del Guericio)

Fundatrix

Body length 2.19—2.54 mm. Antennae 5- or 6-jointed. Antennal flagellum 0.964—1.162 mm, 0.44—0.52 X the body length. Antennal joint 3 (5-jointed) or 3 + 4 (6-jointed) 0.529—0.592 mm long, 2.1—2.6 X processus terminalis which is 0.232—0.255 mm long. Longest hair on 3. antennal joint 0.028—0.031 mm and 1.1—1.4 X basal articular diameter of that joint. Hairs on abdominal tergite 8, 0.052—0.094 mm. Other characters as in apterous viviparous female. Measurements of 4 specimens.

Apterous viviparous female

Body length 1.66—2.71 mm. Antennae 6-jointed, brown like the head but 3. joint may be paler than rest of the antennae. Secondary rhinaria absent in normal apterae, but 1 to 11 may occur on 3. joint in alatiform specimens. Antennal flagellum 1.09—1.83 mm long, 0.63—0.76 X the body length. Antennal joint 3, 0.372—0.569 mm long, 0.74—1.08 X processus terminalis which is 0.418—0.592 mm. Longest hair on 3. antennal joint 0.026—0.44 mm and 0.8—1.8 X basal articular diameter of that joint. Hairs on abdo-

minal tergite 3 maximally 0.035—0.069 mm and those on 8. tergite 0.073—0.102 mm. Apical rostral segment with 7—9 hairs, 0.143—0.185 mm long and 0.84—1.05 X second joint of hind tarsus which is 0.140—0.194 mm long. Siphunculi 0.126—0.196 mm, 0.8—1.0 X the length of second joint of hind tarsus, tapering or conical, brown but darker than the dorsal sclerotisation, faintly imbricated with incision before the flange. Cauda rounded 0.094—0.112 mm long, but shorter than the basal width and with 8—12 hairs. Abdominal tergite 8 with 7—10 hairs and tergite 6 with 5—8 hairs, normally 6, between siphunculi. Abdominal tergites 1—7 with a brown sclerotic shield which is marginally partly reaching the stigmal plates. Thoracic segments and 8. abdominal tergite with cross bars. Abdominal marginal tubercules irregular present on tergites 2—5. Tibia pale with brown apics. Femora 3 and 2 darker brown than femora 1. Measurements of 19 specimens.

Alate viviparous female

Body length 2.3—2.5 mm. Antennae 6-jointed, brown, with 20—25 secondary rhinaria along whole length of joint 3 but on one side. Antennal flagellum 1.89—2.13 mm long, 0.79—0.87 X the body length. Antennal joint 3, 0.604—0.677 mm long, 0.92—1.05 X processus terminalis which is 0.604—0.697 mm long. Antennal hairs and those on abdominal tergites 3—6 and 8 as those for apterae. Apical rostral segment 0.162—0.173 mm long and 0.83—0.95 X second joint of hind
tarsus which is 0.181—0.194 mm. Siphunculi 0.175—0.209 mm long faintly imbricated with a cylindrical basal part and then tapering. Abdominal sclerotic pattern as shown in fig. 1. Measurements of 3 specimens.

Colour in life black.

The Norwegian apterous and alate viviparous females shows greater variation in maximum hairlength on third antennal joint and third abdominal tergite than described by Burger (1975). The abdominal spino-pleural blotch in alate viviparous female is also greater, extending from abdominal tergites 3—6. Fundatress is not described earlier.

Records

Collected from *Silene maritima* on leaves, stems, flower-stalk and subterranean stem (only fundatrix) at Grimstad, Aust-Agder (4 June 1979, fundatrix & 20 July 1974) and at Skjeberg, Østfold (23 June 1974). Collected from *Silene vulgaris* on leaves and stems in Sogn & Fjordane at Leikanger (24 June 1966 & 9 July 1968), Lærdal (3 July 1966) and Borgund (3 July 1966), at Stordal, More & Romsdal (12 June 1974, det.: Hille Ris Lambers), at Nord Fron, Oppland (31 July 1975) and at Alta, Finnmark (28 Aug. 1968, ovi 피해).

Burger (1975) mentions *B. (A.) populi* from South- and Central-Europe. The Norwegian records are from coastal districts with exception of the sample from Oppland which is from the inland, 850 m above sea level.

Brachycaudus (Thuleaphis) sedi Jacob, 1964

Apterous viviparous female

Body length 1.93 mm. Antennae 6-jointed, antennal flagellum 0.581 mm, ratios of flagellar joints 173:57:69:104 + 151. Longest hair on 3. antennal joint 0.007 mm and 0.3 X basal articulating diameter of that joint. Hairs
on 3. abdominal tergite maximally 0.014 mm and those on tergite 8, 0.060 mm and 11 in numbers. Apical rostral segment with 4 secondary hairs and 0.107 mm long. Second joint of hind tarsus 0.136 mm. Siphunculi (fig. 2) pale brown, smooth conical, not longer than basal width which is 0.027 mm. Cauda with 8 hairs. Antennae, femora and tibiae pale brown. Sclerotic pattern as shown in figure 2, pale brown.

Marginal tubercles on abdominal tergites 2—4 and spinal tubercles on tergite 8. One specimen examined. Colour in life reddish brown.

Alate viviparous female

Body length 1.72 mm. Antennae 6-jointed, antennal flagellum 1.01 mm, ratios of flagellar joints 312:151:128:116:116 + 232, secondary rhinaria on 3. joint 13 and on 4. joint 3. Longest hairs on 3. antennal joint 0.09 mm, on 3. abdominal tergite 0.017 mm and on 8 tergite 0.052 mm. Apical rostral segment with 8 secondary hairs and 105 mm long. Second joint of hind tarsus 0.152 mm. Siphunculi brown, tapering faintly longer than basal width of 0.049 mm (fig. 2). Cauda 0.099 mm long and basal width of 0.101 mm, with 8 hairs. Antennae brown with a pale base on 3. joint. Femora and tibia brown. Abdominal sclerotic pattern as shown in fig. 2, brown. Marginal tubercles on abdominal tergites 2—3 and a spinal tubercle on tergite 8. One specimen examined.

Record

Collected in flowers of *Sedum roseum* at Nord-Fron, Oppland (8 Aug. 1975) 900 m above sea level.

REFERENCES

Received 20 Jan. 1986
Nymphal development and food consumption of *Atractotomus mali* (Meyer-Dür) (Hemiptera: Miridae), reared on *Aphis pomi* (DeGeer) and *Psylla mali* Schmidberger

NINA JONSSON

Food consumption and the duration of nymphal development of *Atractotomus mali* were tested by rearing *A. mali* on apple leaves, the aphide *Aphis pomi* and the psyllide *Psylla mali*. Few *A. mali* nymphs developed when fed on only apple leaves. 3.8% of them survived from 2 nymphal stage until adulthood. *A. mali* nymphs consumed more animal food at 20°C that at 15°C, and their consumption of *A. pomi* was higher than that of *P. mali* nymphs. At a temperature of 20°C, *A. mali* nymphs in stages 2—5 consumed 87 *A. pomi* or a dry-weight 3.7 mg, and 40 *P. mali* with a dry-weight of 2.1 mg. Corresponding figures at 15°C were 110 *A. pomi* or 5.0 mg, and 41 *P. mali* and 2.3 mg. The duration of *A. mali* development from nymphal stages 2 to 5 was 11.6 days at 20°C when fed on *P. mali*, and 13.0 days when fed on *A. pomi*. Figures at 15°C were 22.6 days and 28.8 days, respectively. Adult *A. mali* consumed more *P. mali* in nymphal stages 4—5 than they consumed adults. During a 15 day period at 20°C, 26.2 *P. mali* nymphs with a dry-weight of 4.60 mg and 11 *P. mali* adults with a dry-weight of 1.90 mg were consumed. At 15°C, 15.8 *P. mali* nymphs (dry-weight 2.80 mg) and 4.7 *P. mali* adults (dry-weight 0.83 mg) were consumed. A single adult *A. mali* was capable to controlling populations of 50 *A. pomi* individuals in an apple tree.

Nina Jonsson1, University of Oslo, Department of Zoology, Section of Zoology, P.O. Box 1050, Blindern, N-0316 Oslo 3, Norway.

INTRODUCTION

Atractotomus mali is a common heteropteran in Norwegian apple orchards (Austreng & Sømme 1980, Skånland 1981a, Jonsson 1983a). Existing literature gives contradictory informations concerning the food of this species. Collyer (1953), Sandford (1964) and Lord (1971) maintained that *A. mali* nymphs can survive and develop to adults in the absence of animal food, whereas Leonard (1965), Strawinski (1964) and MacPhee (1976) claimed that *A. mali* is mainly zoophagous, or feeds on a combination of animal and plant foods. Thus far, few quantitative studies on food consumption by *A. mali* nymphs and adults, and the effects of different food items on nymphal development at various temperatures have been published.

Therefore I tested the duration of nymphal development in association with *A. mali* consumption at two different temperatures (15°C and 20°C), when fed on prey species *Aphis pomi* and *Psylla mali* placed on apple leaves, and when fed only on apple leaves. I compared the consumption of adult *A. mali* reared on *P. mali* nymphs, with that of *P. mali* adults. The potential size of *A. pomi* populations which may be controlled by *A. mali* placed in apple trees was also examined.

METHODS

The laboratory experiments were conducted at two different temperatures (15±1°C and 20±1°C) between 6 May—5 August 1980. Relative humidity during the experiments was 60±5%, the illumination was 94 lux. The

1) Present address: Directorate for Nature Management, Research Division, Tungasletta 2, N-7004 Trondheim, Norway.
pomi with body lengths between 0.5—2.3 mm, and (3) only apple leaves. A. mali were kept individually in covered plastic containers (diameter 5 cm, height 1.5 cm). I covered the bottom of the containers with water saturated blotter paper, on which I placed an apple leaf serving as food for the prey. Daily, I registered the number of prey consumed by A. mali, and molting products of the nymphs. In addition, I daily changed food supply, apple leaf and blotter paper.

In the second laboratory experiment I investigated the maximum food consumption of adult A. mali, reared on a surplus of P. mali (30 individuals) in: (1) 4—5 nymphal stages and (2) adults. Predators were kept individually on an apple branch, surrounded by plastic bottles (Fig. 1a). The branches used in the experiment, were devoid of other potential food items such as eggs, pupae, and larvae of arthropods. Every third day food consumption was recorded, and the food supply and branches changed. Experiments lasted for 15 days. As controls I estimated natural mortality of the prey at the two temperatures by using 10 containers and 10 bottles with prey only. Consumed dry-weight was estimated as the difference between dry-weight of undigested and digested prey at the same developmental stages. Prey items were dried in a vacuum for 24 hours at 60°C.

In the field experiment, carried out during 10 July—18 August 1980, I investigated the number of random selected A. pomi, one adult A. mali was able to stabilize. Experiments were performed at Blindern, Oslo, during a period without noteworthy precipitation. I used 3 year old apple trees. A. mali were kept individually on a branch, surrounded by a 45 cm long nylon bag, with mesh size 360 µm bar mesh (Fig. 1b). Branches did not contain eggs, pupae or larvae of arthropods, and were not treated with any chemical pesticide. I made 6 parallel experiments using each of the following prey densities: 30, 40, 50, 60 and 70 A. pomi. Prey number were determined on basis of several pilot experiments. To estimate the growth of A. pomi in absence of predators, I concurrently kept 6 bags with prey only, each starting with 50 A. pomi. 2—3 times a week the number of A. mali in all bags were counted. Air temperature and relative humidity were the same inside and outside the bags. Light intensity inside the bags was, however, reduced by ca. 25% because of the nylon fabric.
RESULTS

Nymphs

Two (3.8%) *A. mali* nymphs survived from 2nd nymphal stage to adulthood when fed on apple leaves only. Both survivors were males. The mean time period over which nymphs were kept alive was significantly longer at 15°C than at 20°C (*t*-test, *P* < 0.05), and mean life time at 15°C and 20°C (±95% confidence limits) was 10.4±2.7 days, and 6.4±1.2 days, respectively. Nymphs passed through more moulting stages at higher temperatures than at lower temperatures. At 15°C, 16 nymphs lived through one moulting, and 10 nymphs died without moulting. At 20°C, 2 nymphs reached the adult stage, 6 nymphs survived one and two molts, and 19 nymphs died without molting. I started with second instar nymphs only in this experiment.

A. mali nymphs developed faster at 20°C than at 15°C (simultaneous *t*-tests, all *P*<0.001), and when fed on *P. mali* rather than *A. pomi* (*t*-tests, all *P*<0.01) (Fig. 2). Duration of nymphal stages increased towards the adult stage. Development at 15°C, from second instar nymphs to adult *A. mali*, lasted for 28.8 days when reared on *A. pomi*, and 22.6 days when reared on *P. mali*. The corresponding growth periods at 20°C, were 13.0 days and 11.6 days, respectively.

Food consumption by *A. mali* nymphs was higher at 20°C than at 15°C (*t*-tests, all *P*<0.05) (Fig. 3). The number of *P. mali* consumed within each instar stage was nearly constant at both temperatures. The number of *A. pomi* consumed, however, increased with age, except for the fifth instar nymphs at 20°C, which had very low food intake during the final two days before their moulting to adults. Dry-weights consumed increased with increasing nymphal stages. At 15°C mean number and dry-weight of *A. pomi* consumed from second instar stage to adult stage were 110 and 5.0 mg, and of *P. mali* 41 and 2.3 mg,
respectively. At 20°C, mean number and dry-weight of consumed A. pomi were 87 and 3.7 mg, and of P. mali 40 and 2.1 mg. When reared on P. mali, 2.5% of the A. mali nymphs died before reaching the adult stage, while 7.5% died when reared on A. pomi. 2.5% of the nymphs died at 15°C and 7.5% at 20°C. Consumption by predators which died during the course of the experiment was omitted from the results.

Adults
The consumption-rate of adult A. mali was higher when they were fed on P. mali in 4 and 5 nymphal stage, than when fed on adults ('t'-tests, all P<0.001) (Fig. 4 and 5). Consumption of P. mali nymphs varied in range during the three day periods from 1—6 individuals at 15°C, to 2—9 individuals at 20°C. The corresponding range of variability in consumptions of P. mali adults was 0.4 individuals and 1.5 individuals, respectively. At 15°C, A. mali consumed 15.8 P. mali nymphs (2.8 mg), and 4.7 P. mali adults (0.83 mg). Corresponding consumptions at 20°C were 26.2 nymphs (4.6 mg) and 11 adults (1.9 mg). None of the A. mali which were fed on P. mali nymphs died during the experiment. However, two female A. mali died at each temperature when fed on P. mali adults. Food consumption of those A. mali which died was omitted from the results.

Controls
Mortalities of P. mali nymphs and adults in plastic containers and bottles were negligible (ca. 1% per day). The mortality of A. pomi, however was high. Only digested prey were recorded in the results, while those which died for other reasons were excluded. Prey killed by A. mali were easily recognized by their shrunken body form.

Field experiment
One A. mali adult stabilized populations of 50 A. pomi individuals (Fig. 6). An initial prey population of 40 A. pomi individuals or
fewer decreased, while initial population sizes of 60 or more *A. pomi* individuals increased in presence of one *A. mali* predator. Control populations of *A. pomi* increased from 50 to 250 individuals within 16 days.

DISCUSSION

The present results illustrate that only a very few *A. mali* nymphs survived and developed from nymphs to adults on apple leaves only. Most individuals probably need some animal protein in order to survive. During the present experiments consumption by *A. mali* nymphs was low in comparison with food consumption by other predaceous heteropterans such as *Anthocoris nemorum*, *Blepharidopterus angulatus* or some Coccinellidae larvae (Skånland 1981b).

A. mali nymphs developed more slowly and mortality was higher when reared on *A. pomi* than *P. mali*, and at 15°C than at 20°C, even though more *A. pomi* were consumed.

Fig. 5. Mean cumulative consumption in number and dry-weight of adult *Atractotomus mali* at 15°C and 20°C during 15 days, when reared on adult *Psylla mali*. The data are based on 6 parallel experiments at each temperature.

Fig. 6. Numerically changes in *Aphis pomi* (○—○) in presence of one adult *Atractotomus mali*. Data are based on 6 parallel experiments. Initial population sizes of *A. pomi* varied between 30 and 70 individuals. Mean growth of 6 *Aphis pomi* populations (▲—▲) in absence of predators.
than *P. mali*. Upon examination of the growth rates of *A. mali*, the psyllid *P. mali* seemed to be the more suitable prey item. Anderson (1962) observed that Anthocoridae nymphs developed faster fed on aphids than on psyllids, and therefore classified the Anthocoridae species as aphidophagous. Correspondingly, *A. mali* may be classified as psyllophagous. The reason for *A. mali*'s quicker growth on *P. mali* than on *A. pomi*, may be that *P. mali* is more easy to locate and capture, and *A. mali* and *P. mali* may be co-adapted, because of the parallel development in the blossom clusters on apple trees (Jonsson 1983b, 1985). Nymphal development of *A. mali* and *P. mali* are synchronous, and each year *P. mali* occur in great numbers on apple trees. Nymphs are easily caught because of their slow movements. *P. mali* therefore seems to be a predictable food resource for *A. mali* nymphs, on which they may specialize their foraging activities. On the other hand, population densities of *A. pomi* vary considerably from year to year. No *A. pomi* were observed in apple trees at Gaustad, Oslo in 1979 and 1981, while *A. pomi* were numerous in 1980 (Jonsson 1981). Furthermore, the distribution of *A. pomi* in apple trees is scattered, and colonies are usually built on freshly sprouted leaves. *A. pomi* appears to be an unstable food resource and an unpredictable prey species for *A. mali* nymphs, possibly explaining why *A. mali* does not show any particular trophic specialization on the latter prey item.

Adult *A. mali* consumed 2—3 times more *P. mali* nymphs than *P. mali* adults. An explanation for this may be that adults are more difficult to catch than nymphs. During the laboratory experiments, adult *P. mali* were mostly observed on the leaf surfaces and petiols, and usually they jumped away in the near presence of *A. mali* or when touched by them with the proboscis. *P. mali* in 4—5 nymphal stages also lived on the leaf surfaces and petiols, but moved quite slowly. No adult *A. mali* died when fed on *P. mali* nymphs. However, two *A. mali* died when fed on *P. mali* adults. *P. mali* nymphs may be more easily caught than adults.

Field experiments illustrated that one adult *A. mali* is capable of stabilizing populations of 50 *A. pomi*. In corresponding experiments, *Anthocoris nemorum* and *Blepharidopterus angulatus* were able to stabilize populations of 70 *A. pomi* (Skånland 1978). However, *A. mali* is abundant in many apple orchards (Austreng & Sømme 1980, Skånland 1981a, Jonsson 1983a) and may therefore be one of the important predators controlling natural populations of aphids. But, as *A. mali* is a less efficient predator than some other heteropterans, it may be less desirable as a biological pest control species.

ACKNOWLEDGEMENTS
My sincerest thanks go to Dr. Bror Jonsson, Directorate for Nature Management, for constructive criticism of the manuscript and to Professor Lauritz Sømme, University of Oslo, for various kinds of help during the study. This research was supported by the Department of Biology, University of Oslo, and Directorate for Nature Management.

REFERENCES

Received 15 Febr. 1986
The first record of *Thaumalea verralli* Edwards (Diptera: Thaumaleidae) from Scandinavia

ENDRE WILLASSEN

A single male imago of *Thaumalea verralli* Edwards was caught when resting within the moss-bed in a hygropetric locality on Mt. Fløyen, Bergen, Norway. The wing and genitalia are figured.

E. Willassen, Museum of Zoology, University of Bergen, Museplass 3, N-5000 Bergen.

INTRODUCTION

About sixty species of the family Thaumaleidae are known from Europe (Vaillant, 1981). Only three species are known from Scandinavia: *Thaumalea caudata* Bezzi, *Thaumalea testacea* Ruthe, and *Thaumalea truncata* Edwards (Edwards, 1929, Andersson, 1977). Two additional species, *Thaumalea obscura* (Zetterstedt) and *T. tricuspis* Tjeder (1949b) have been listed in the records, but these have been shown to be synonyms of *T. testacea* (Tjeder, 1949a, Andersson, 1977).

OBSERVATIONS

On 21 Sept. 1983 I visited a hygropetric locality on the Mt. Fløyen, Bergen. The site is within a park area where the arboreal vegetation is partly dominated by planted, introduced species. The stream is predominantly shaded by beech (*Fagus*) canopy.

While examining partly submerged mosses on a vertical rock surface for hygropetric Diptera larvae, I discovered a flying midge landing on the mosses and watched it crawl into the moss-bed.

The specimen was mounted in Canada balsam for identification and turned out to be a male of *Thaumalea verralli* Edwards (Fig. 1).

No larvae or pupae of Thaumaleidae were found neither among the mosses nor on the patches of the rock being devoid of macrovegetation.

Fig. 1. *Thaumalea verralli* Edwards, male imago, A wing, B genitalia.
DISCUSSION
The larvae of the Thaumaleidae inhabit the hygropetric zone of relatively cool springs and streams. Having amphipneustic respiratory system, with one pair of spiracles on the dorsal part of prothorax and one spiracle dorsally between the procerci (Saunders, 1923) they live partly submerged in the thin film of water flowing over rocks. The fauna of such habitats have not been examined in any extent in Norway. Although no immatures were found at the site where T. verralli was captured, there is reason to believe that the locality supports a population of thaumaleids. According to Vaillant (1978) the imagines are relatively sedentary and usually do not leave the surroundings of the larval habitat.

In contrast to the majority of Thaumaleidae species, T. verralli is widely distributed in Europe (Vaillant, 1969, 1978). The species has even been recorded from Iceland (Tjeder, 1949b, Nielsen & al., 1954) and the Faroes (Pedersen, 1971). Vaillant (1978) listed T. verralli in «Limnofauna Europaea» as probably occurring in region 17, which includes Denmark and S. Sweden. The finding of this species in region 20 adds weight to Vaillant's expectation and probably reflects that no intensive search for thaumaleids has been carried out in Scandinavia to date. Western Norway is relatively rich in hygropetric habitats and although Vaillant (1978) pointed out that there seem to be no exclusively boreal species of thaumaleids in Europe, there is reason to expect that the number of species in Scandinavia may be higher than shown as yet.

ACKNOWLEDGEMENT
I thank Dr. F. Vaillant, Grenoble, for checking the manuscript.

REFERENCES

Received 2 April 1986
Bibio nigriventris Haliday, 1833 (Dipt. Bibionidae) in Norway

LITA GREVE

A total of 316 specimens of *B. nigriventris* Haliday, 1833, based on old revised and new collections, have been recorded from around 70 localities. The distribution of *B. nigriventris* in Norway is given. *B. nigriventris* is common in the lowland north to Troms province, and is probably one of the most common species of Bibionidae in Norway. The species has been collected up to 900 m a.s.l. which belong to the subalpine zone, but it seems to be rare here. Most records are from mixed coniferous and deciduous forests.

The flight period is late May to July in the lowlands, except in the two northernmost provinces where the flight period is June to early August. The few records from the subalpine zone dates to late June and July. The sex ratio in all the material is 1 : 1, but in Malaise traps the sex ratio changes towards 2 males per 1 female.

Lita Greve, University of Bergen, Zoological Museum, Museplass 3, N-5007 Bergen Univ., Norway.

INTRODUCTION

Adult Bibionidae are common in many parts of Norway. Several species make swarms and are then easy to capture. Few researchers, however, have studied this fly family in Norway. The last survey dates back to Siebke (1877). Bibionidae larvae feed on different plant roots, and some are pests on agricultural crops.

Two species of *Dilophus* and thirteen species of *Bibio* (= Hirtea) was listed by Siebke. Older material of *Dilophus* should be revised on account of Haenni's (1982) revision. Greve, Solem & Olsen (1984) found *D. femoratus* Meigen to be fairly common in Norway. *B. clavipes* (Meigen), *B. fulvipes* Zett., *B. pomo­nae* (Fabr.) and *B. rufipes* Zett. were found to be common at Kongsvoll, Southern Trøndelag province (Greve, Solem & Olsen, 1984). Greve (1986) mentioned two more *Bibio* species from Norway, *B. hortulanus* (L. 1758), included in Siebke's survey, and *B. marci* (L. 1758) as new to Norway. *B. umbel­lariarum* Zett in list probably represents a syn­onym for *B. fulvipes* Zett.

Freeman & Lane (1985) listed a total of twenty species of the genus *Bibionidae* from the British Isles — sixteen belonging to the genus *Bibio* and four to the genus *Dilophus*.

Hackman (1980) listed eleven *Bibio*, one *Di­lophus* and one *Penthretria* from Finland, and Wahlgren (1919) listed thirteen *Bibio* and three *Dilophus* from Sweden. Compared to these lists the number of *Bibionidae* in Norway can be calculated to be roughly fifteen, but only the seven specifically mentioned above and *B. nigriventris* Haliday, 1833, treated here, are recorded with certainty from Norway. *B. nigriventris* is mentioned from southern parts of Sweden (Wahlgren, 1919), and it is listed by Hackman (1980). More information on the European distribution is given by Verbeke (1971).

MATERIAL AND METHODS

A total of 316 specimens of *B. nigriventris*. 158 males and 158 females were collected from around seventy localities. All material hitherto determined and recorded as *B. nigriventris* in Norwegian museums is included in this survey. Material is for the main part deposited in Zoological Museum, University of Bergen. Material deposited in museums elsewhere is notified in the list of records.

There is little information on collecting methods, but one can assume that most of it has been collected by a sweep-net. Much ad-
Table 1. Flight periods of *Bibio nigriventris*. The months are divided into decades.

<table>
<thead>
<tr>
<th>Area</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug.</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Norway, 0-600 m a.s.l.</td>
<td></td>
<td>X X X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Norway, 600-900 m a.s.l.</td>
<td></td>
<td></td>
<td></td>
<td>X X X</td>
</tr>
<tr>
<td>North Norway, Nordland & Troms</td>
<td>X X</td>
<td>X X X X X X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

number of segments of the antennal flagellum is only five (rarely six according to Freeman & Lane, 1985) compared to seven or more in most other *Bibio* species. This makes it fairly easy to distinguish *B. nigriventris* from other Norwegian *Bibio* species. The body is black in both sexes. The coxae of the male and the femora are black, at least the last pair of tibia are reddish brown. The legs of the females are more brighter reddish-yellow. The front wing-ribs are dark in both sexes. The last part of the male wings including the ribs is milky white, all wingsribs in the last part of the female wing, however, is dark and contrasting. The stigma of the male wing is not very distinct, and only touching the margin of the wingfront in a smaller part. The stigma is distinct in the female wing. *B. nigriventris* larvae may damage roots of larch.

Earlier records of *B. nigriventris*

Ø, Halden: Hvaler (Strand, E. 1913). This material is today not present in Norwegian collections. Siebke (1877) records *B. nigriventris*, 1 ♀, from AK, Oslo: Tøyen, the Botanical garden, 1845, June. This female is not present in Zoological Museum, University of Oslo (ZMO). VAI; Sirdal: Sireosen (Strand, E. 1913): As for Østfold (see above). HOY, Bergen: Kalfaret 1 ♀ 7 June 1876 (ZMO NO. 11291). There is also 1 ♀ labelled Bergen, 7 June 1874, coll. Schneider, which also might have been seen by Siebke (1877). (ZMO No. 11290).

Revised records of *B. nigriventris*

AK, Oslo: Tøyen, the Botanical garden, 1 ♀, June 1845. This female was published as *B. varipes* Meigen by Siebke (1877), (ZMO 11295). Siebke wrote «in horto botanica. Juni», but he stated no year. AK, Oslo: Lysa-
New records of *B. nigriventris*

AK, Frogn: Håøya. Malaisetrap A 5 ♀♂, Malaisetrap B 1 ♂ 2 ♀♂. BO, Hurum: Holmsbu 1 ♂, Tofte 52 ♀♂ 27 ♀♀, BV, Hol: Geilo 1 ♀. VE, Tjome: Kjære 1 ♂, Mostrand 2 ♂♂ 4 ♀♀. AAY, Arendal: Hasselåsen 4 ♀♀. VAY, Flekkefjord: Hidra, Dragey 1 ♂. Søgne: Sogn Folkehøgskole 1 ♂, K. Ry, Kårestø: Storavann 1 ♂, Åvik 1 ♂. HOY, Bergen: Bergen 1 ♂ 1 ♀, Sandviklen 1 ♂ 2 ♀♀, Hellenesset 1 ♂ 1 ♀, (Asane) Vollen 1 ♂ 2 ♀♂, (Asane) Golbøen 1 ♂ 4 ♀♀. (Fana) Stavollen 1 ♂. (Fana) Stend 2 ♂♂ 3 ♀♀, (Fana) Flesland 1 ♂; Samnanger: Adland 1 ♀; Os: Røykenesvann 1 ♂ 2 ♀♀; Sund: Sæle 2 ♂♂ 2 ♀♀; Askøy: Hestetrett 3 ♂♂ 1 ♀; Osterøy: Herland 2 ♀♀, Skaff 3 ♂♂ 2 ♀♀; Øygarden: Blomvåg 1 ♂ 1 ♀. HOI, Etne: Austheim 10 ♀♀, Brenneland 1 ♀; Kvinnherad: Berget 1 ♂, Gudalsdalsdalen 2 ♀♀; Rosendal, Baroni 2 ♂♂ 1 ♂, Rosendal, near church, 1 ♂, Skeie 1 ♂, Skeiehavn 1 ♂, Ukedal 1 ♂, Varaldsøy, Djuvsland, Narvikse 1 ♀; Ullensvang: Djonno 1 ♂, Ringøy 1 ♀; Eidsfjord: Hjølmodalen 1 ♂, Øvre Eidfjord 1 ♂ 1 ♀; Ulvik: Granvin 1 ♂ 2 ♀♀, Granvin, Seim 3 ♂♂ 1 ♀; Voss: 4 km east of Mjølfjell 5 ♂♂ 15 ♀♀; Kvam: Bjerke 3 ♂♂ 1 ♀, Torrvikbygd, Bergslane 1 ♂. SFY, Gulen: Brekke 1 ♂, Indre Takle 1 ♂, STI, Lærdal: Eggum 1 ♂, Kvamme 1 ♂, STI, Trondheim: Lade 1 ♂. Oppdal: Kongsvoll 1 ♂ 5 ♀♀, Kongsvoll, Raubekken 1 ♀ (The Museum, Univ. Trondheim); Klæbu: Målsjøen 1 ♀ (The Museum Univ. Trondheim): NTI, Steinkjer: Steinkjer 1 ♂. NY, Bodo: Bodo 1 ♂ 1 ♀, Falkflaugvann 3 ♂♂ 1 ♀, Falkflaug, upper Falkflaug 8 ♂♂ 3 ♀♀ (two partly damaged *Bibio* males probably also belong here), Örskar, Kronli 3 ♂♂ 1 ♀, Utskar, Skut 4 ♀♀, Valnes, Sjågang 5 ♂♂ 6 ♀♀; Gildeskål: Oterstranda 9 ♂♂ 6 ♀♀. NSI, Hemnes: Skåreldalen 2 ♂♂ (Rana Museum 2350); Rana: Kvandalen VP 43572 ♂♂ (Rana Museum 2983), Kvandalen VP 4356 1 ♂ (Rana Museum 2980), Kvandalen VP 4257 2 ♂♂ (Rana Museum 2969, 2857), Straumbygd 1 ♀ (Rana Museum 2983); Beiar: Kval 1 ♂ 1 ♀, Solhøy 1 ♂; Saltidal: Rognan 4 ♂♂ 1 ♀. NNØ, Hamarøy: Fjelltun at Kråkmo 1 ♂; TRY, Tromsø: Tromsøya 1 ♂; Kvetsjord: Borkenes 1 ♂, Straumsbotn 2 ♂♂ 2 ♀♀. TRI, Bardu: Setermoen 2 ♂♂ 1 ♀.

DISCUSSION

The distribution of *B. nigriventris* in Norway is shown in Fig. 1, and plotted in EIS squares. *B. nigriventris* is commonly distributed in the lowlands north to Troms province. Pecina (1965) reported *B. nigriventris* from alpine areas in Middle-Europe, but did not state how high up into the mountains the specimens were collected. In Norwegian mountains *B. nigriventris* is however, not recorded in the alpine zone (above the tree line), and it is not common in subalpine areas either. The locality having the highest elevation is Raubekken, Kongsvoll, South-Trøndelag province where one female was taken in a Malaise-trap at 900 m a.s.l. Solem (1985) described this site as sub-alpine zone with birch forest. The surroundings of Kongsvoll in the Dovrefjell mountains, South Norway, has through several years been surveyed through-out the month June to October, and a number of Malaise-traps were used in the middle-, low- and the subalpine zones, but only this one female was collected. The Bibionidae fauna of the Dovrefjell mountains were described by Greve et al. (1984). Neither was *B. nigriventris* represented in the IBP collections from the middle and low alpine zones at Hardangervidda.

Similar sites to the one in the subalpine zone where *B. nigriventris* was collected at Kongsvoll are one at Geilo at approximately 700 m a.s.l., and another at Mjölfjell at 670 m a.s.l. where *B. nigriventris* was collected in Malaise-traps during the summers 1985 and 1986. These data indicate that *B. nigriventris* occurs in the subalpine zone, but is scarce here. Other sites where *B. nigriventris* has been collected are mostly far below these levels.

Pecina (1965) described *B. nigriventris* as an eurytopical and forest species. This description fits well with the data from Norway, where most specimens have been collected in the vicinity of or in deciduous or mixed forests. Since sweep nets are not the best collecting method in forest habitats this may partly explain why a common species like *B. nigriventris* is scarce in older collections. The Norwegian material shows that outside forests, *B. nigriventris* may occur in herbage, gardens, and sometimes in meadows. Pecina (1965) also mentioned habitats similar to these, and remarks also that in contrast to other *Bibio* species which swarm in great numbers, *B. nigriventris* often occur in low
numbers at the sites. This is a trend in the Norwegian collections also, and especially when a sweep-net has been used for collecting.

The flight period of *B. nigriventris* is shown in Fig. 2, and here material from occasional catches and Malaise-traps have been considered. The flight period of *B. nigriventris* is found to be late May to first part of July in southern Norway, while the records from northern Norway indicate late July to early August. This delay is certainly caused by a later spring in northern Norway compared with southern Norway. The climatic variations that occur from the extreme coast to areas having more continental climate does not influence on the flight period of *B. nigriventris*. Specimens appeared in Malaise traps at the same time at these two areas.

The earliest record on an annual basis is represented by a specimen taken 5 May at Holmsbu, Hurum, Buskerud province, and the latest record is 4 August at Urskar, Bodø, Nordland. Freeman & Lane (1985) noted the flight period to be May—July at the British Isles, which is fairly similar to the flight period in southern Norway. Pecina (1965) reported the flight period to be May—June in the lowlands while specimens were collected in late July in the mountains of Czechoslovakia. The flight period of *B. nigriventris* in the mountains of Czechoslovakia corresponds with the few findings in the Norwegian mountains.

In the total material the sex ratio is 1:1. In Malaise-trap collections, however, the males outnumbered the females, e.g. at BØ, Hurum: Tofte, the sex ratio was 2 males per 1 female. This indicate that the males move around much more than the females.

ACKNOWLEDGEMENTS

I am indebted to J.E. Raastad, Museum of Zoology, University of Oslo, John O. Solem, The Museum, University of Trondheim and Per Straumfors, Rana Museum for loan of material. My thanks are due to the following persons who collected parts of the material: Tor & Sissel Fjelldal, Bergen; Fred Midtgaard, Ås; Tore R. Nielsen, Sandnes; and last, but not least my colleagues Torstein Solhøy and Arild Fjeldså.

REFERENCES

Received 25 April 1986
Megamerina dolium (Fabricius, 1805) (Dipt. Megamerinidae) in Norway

LITA GREVE AND FRED MIDTGAARD

Megamerina dolium (Fabricius, 1805) (Dipt. Megamerinidae) is recorded from Frogn, Håøya in Akershus county. This is the second record from Norway, and the first in nearly 140 years. One male was sorted out from Malaise-trapped material caught between 3—16 June 1984.

Lita Greve, Zoological Museum, University of Bergen, N-5007 Bergen Univ., Norway. Fred Midtgaard, Norwegian Forest Research Institute, P.O. Box 61 N-1432 Ås-NLH, Norway.

In connection with a study of the insect fauna of Håøya in the Oslofjord, light-traps, window-traps and Malaise-traps have been used in the years 1983 and 1984. In material collected in a Malaise-trap between 3—16 June 1984, one male Megamerina dolium was found. The trap was placed in an open deciduous forest with Tilia, Ulmus and Quercus near old oak trees with dead branches. The forest in this part of the island has been partly protected for decades, and a proportional high number of dead and decaying trees can be found in this area. The bottom vegetation was rich. The trap was operated from April to September 1984. The island Håøya (EIS 28) is in Frogn community and Akershus county. No more specimens were found in this trap (A), and no specimens at all in another trap (B) positioned on the island during 1984.

Megamerina dolium (Fabricius, 1805) is the only representative of the family Megamerinidae in Scandinavia. Megamerinidae is a very small fly family numbering between 15—20 species on a world basis. The family is usually placed in the superfamily Psiloidea (Rohdendorf 1974).

M. dolium is a fly of medium size, slender, 8—10 mm long. Most of the head, thorax and abdomen is black. In dry specimens the lower part around the eyes are with a silvery shine which looks black in alcohol fixated specimens. Hind femora with two rows of short, stout spines — see Fig. 1.

Until recently little information was to be found on the biology of M. dolium. A.A. Al-

Fig. 1. Upper: Head of Megamerina dolium (Fabricius). Lower: Hind leg — femur; note the two rows of ventral spines.
treestumps and near fallen timber, and one specimen has been reared from a pupa found under oak (Quercus) bark in April (Chandler, 1975). Chandler (1975) and Allen (1983) both mention localities of older forest — mixed woodland and older park area.

M. dolium has been recorded once earlier from Norway as Lissa loxocerina Fallén by Siebke (1877). It was found in the botanical garden at Tøyen in Oslo August 1st. 1847. The specimen, a female, is present in Zoological Museum of Oslo. In the Zoological Museum of Oslo one additional specimen, a male collected by Esmark and labelled «Oslo» only, was found. This is the only material in Norwegian museums. The name M. loxocerina Fallén 1829 was synonymized by Hennig (1941) in his revision of the Megamerinidae.

Lyneborg (1962) reports M. dolium as distributed all over Denmark, but not common. In Sweden it is a southern species distributed north to the provinces Bohuslän, Västergötland, Öland and Gotland (Ringdahl 1960). Walter Hackman (pers. comm.) has informed us that M. dolium is distributed in SW-Finland, and that it is a rare species there.

M. dolium is probably a rare fly also in Norway. It is doubtful that the Botanical garden today can sustain populations of flies developing in rotten wood or fallen timber. It is noteworthy that in a survey of another island, Ostøya, in the inner Oslofjord with Malaise-traps, window-traps and netting during the years 1982 to 1984, no specimens were found even though localities should be suitable for M. dolium. Parts of outer Vestfold have also been surveyed during the last years, but no specimens of this species have been found.

ACKNOWLEDGEMENTS

We are most grateful to the following people for information on the distribution of M. dolium: A.A. Allen, London (England), W. Hackman, Helsingfors (Finland) and U. Qvick, Eskilstuna (Sweden).

REFERENCES

Received 3 Febr. 1986
New Norwegian Empididae (s.str.) (Dipt.)

TERJE JONASSEN

Thirty species of Empididae (s.str.) are reported new to the Norwegian fauna.

Terje Jonassen, N-4170 Sjernarøy, Norway.

INTRODUCTION

Below are given data for 30 species of Empididae (s.str.) that do not seem to be reported from Norway previously. Of these, at least five species are new to Scandinavia. This indicates that these flies have received relatively little attention from preceding Norwegian entomologists. This especially refers to the Hemerodromiinae where the total number of Norwegian species hereby is increased by 55 per cent, from 18 to a total number of 28. The Hemerodromiinae are also poorly known on a European basis, as indicated by the scattered records for some of the species (e.g. Hemerodromia, cf. Vaillant 1981). This is probably due to their inconspicuousness, both in general appearance and in their choice of habitats. They are most commonly found in damp situations. I have captured specimens in low herbage near water, on mud banks, on wet rocks and damp moss in and near streams. The Hydrodromia species have all been captured skating on minor accumulations of water, where they at some localities are dominant species in the very early days of spring.

The specimens from Håøya have all been collected by Fred Midtgård. Elsewhere, when nothing else is mentioned, the specimens have been collected by the author and is deposited in the author's collection. A few of the specimens are deposited in the Museum of Zoology, Bergen (ZMB). The geographical division of the districts follows Økland (1981).

SYSTEMATIC LIST

Subfamily Empidinae

Rhagas unica Walker
AK, Frogn: Håøya, EIS 28, 5—19 May 1984, 1 ♂, 1 ♀ (Malaise trap A), 2 ♀♀, 1 ♀ (Malaise trap B); 3—16 June 1984, 1 ♀ (Malaise trap A); 19 May—3 June 1984, 1 ♂ (Malaise trap B); RI, Forsand: Songesand skule, EIS 7, 4 June 1983, 1 ♀.

Rhamphomyia (Pararhamphomyia) albidentris Strobl
AK, Frogn: Håøya, EIS 28, 19 May—3 June 1984, 1 ♂; RI, Forsand: Songesand skule, EIS 7, 5 June 1984, 1 ♀ (MB). This species is easily distinguished in the female sex due to its white abdomen. There are still some slight incertitude concerning the males of the species, which Frey originally described under the name of _woldstedti_. He subsequently synonymized these males with _albidentris_, of which Strobl's type specimen is a female. There seem, however, not to be any records of males and females taken in copula.

R. (Pararhamphomyia) albipennis (Fallén)

R. (Pararhamphomyia) micropyga Collin
AK, Frogn: Håøya, EIS 28, 19 May—3 June 1984, 4 ♀♀ (Malaise trap A). A rather little known species with previous records from Great Britain and Czechoslovakia only (Barták 1982).
R. (Pararhamphomyia) murina Collin
VAY, Flekkefjord: Djupvik, EIS 4, 29 May 1982, 3 ♂♀ (MB); RI, Forsand: Songsand skule, EIS 7, 6 June 1982, 1 ♂; 15 May 1984, 7 ♂♂ leg. Helene Moen; 24 May 1984, 2 ♂♂; 27 May 1984, 1 ♂; 13 May 1985, 1 ♂ leg. Tom E. Nøkling; 28 May 1985, 1 ♂; towards Sunnmørk, EIS 14, 2 June 1985, 30'0', 3 ♂♀. As with the above species, *murina* is previously known from Great Britain and Czechoslovakia only (Bartlik 1982, and in litt.). Taken most abundantly on and around *Salix*, *Betula* and similar vegetation in the subarctic zone.

R. (Pararhamphomyia) nitidicol/is Frey
AK, Frogn: Håøya, EIS 28, 19 May—3 June 1984, 2 ♂♂; 3—16 June 1984, 1 ♂ (all Malaise trap B); RI, Forsand: Songsand, EIS 7, 4 June 1983, 2 ♂♀; 20 May 1984, 1 ♂; 24 May 1984, 1 ♀; 27 May 1984, 12 ♂♂, 7 ♀♀ (2 ♂♂, 2 ♀♀ in ZMB); 28 May 1985, 5 ♂♂, 2 ♀♀; Skurvedalen/Songesandstølen, EIS 7, 31 May 1984, 2 ♂♂, 1 ♀; Helmikstå towards Forestølen, EIS 8, 2 June 1985, 1 ♂; towards Sunnmørk, EIS 14, 2 June 1985, 1 ♀. Very common at the localities in Forsand on the leaves of *Betula* ultimo May/primo June. No swarming was observed.

R. (Pararhamphomyia) simplex Zetterstedt
RY, Hå: Brusand, EIS 3, 11—12 June 1985, 1 ♂. This typically coastal species was swept up from the vegetation surrounding a saline pool at the beach.

R. (Pararhamphomyia) tibiella Zetterstedt

R. (Pararhamphomyia) unguiculata Frey

R. (s.str.) coracina Zetterstedt
STI, Oppdal: Kongsvoll (900—1000 m a.s.l.), EIS 79, 19 June 1967, 1 ♂ leg. A. Løken (MB) (ZMB). A mountain and northern species previously known from the middle and northern parts of Sweden and Finland in addition to Northern Germany.

Empis (s.str.) bicupidata Collin

E. (Coptomelania) hyalinipennis Fallén

Hilara canescens Zetterstedt
RY, Sandnes: Høle, EIS 7, 22 July 1982, 5 ♂♀, 1 ♂; RI, Forsand: Songsand, EIS 7, 28 June 1984, 1 ♂; 18 July 1984, 1 ♂; 8 August 1984, 1 ♂; 23 July 1985, 1 ♀; Helmikstå, EIS 8, 25 July 1985, 1 ♂; HOI, Etne: near Austreim, EIS 23, 26—30 June 1985 (Malaise trap), 1 ♀ leg. Lita Greve Jensen (ZMB). Although no previous records are available, the species is probably not uncommon in Norway and has in the past possible been confused with other species. There are also additional specimens present in ZMB (Lita Greve Jensen in litt.).

H. cornicula Loew
AK, Frogn: Håøya, EIS 28, 19 May—3 June 1984, 1 ♂; 3—16 June 1984, 3 ♂♂, 8 ♀♀ (all Malaise trap A).

H. flavipes Meigen

H. implicata Collin
RY, Finnøy: Eik, Sjernarøy, EIS 14, 13 August 1985, 1 ♀. Distinguished from related species by the dull black head and the pair of bristles each side of the pronotum. All other diagnostic features agree closely with Collin's (1961) description. This species has previously been known from British specimens only. As with the specimen at hand, the British specimens have all been captured in August.
H. obscura Meigen
RY, Rennesøy: Førsvoll, EIS 14, 26 July 1982, 1 ♂; Sel, EIS 14, 10 July 1983, 1 ♂. The genitalia of the latter have been examined and they agree closely with the figures given by Collin (1961) and Straka (1975).

H. pilosa Zetterstedt
AK, Frogn, Håøya, EIS 28, 19 May—3 June 1984, 2 ♂♂, 6 ♀♀ (Malaise trap A), 1 ♂ (Malaise trap B). Although Siebke (1877, citing Zetterstedt) includes this species as Norwegian, Collin (1961) has subsequently identified the Norwegian specimens as belonging to scrobiculata Loew. Thus, the specimens from Håøya are the first Norwegian records of the true pilosa.

H. platyura Loew
AK, Frogn: Håøya, EIS 28, 16—27 June 1984, 1 ♂. The genitalia of this specimen have been examined, and they agree closely with the figures given by Collin (1961).

H. submaura Collin
HOI, Voss: 4 km east of Mjølfjell (670 m), 8 June—13 July 1985 (Malaise trap), 1 ♀ leg. L. Greve (ZMB). A species within the Hilara maura-complex, distinguishable in the females by the combination of slender hind femora and yellow knees.

Subfamily Hemerodromiinae

Chelipoda vocatoria (Fallén)
RY, Sandnes: Melshei, EIS 7, 3 August 1982, 1 ♂ (RW); Rennesøy: Vikevåg, EIS 14, 2 September 1981, 1 ♂. By older authors often confused with the similar C. albiseta Zetterstedt. Thus the Chelipoda specimens captured by Boheman in the Dovre mountains (Siebke 1877, under albiseta), could in fact well be vocatoria.

Chelipoda concinnicauda Collin
RY, Sandnes: Melshei, EIS 7, 3 August 1982, 1 ♂, 1 ♀ (RW); RI, Forsand: SONGESANDSTØLEN, EIS 7, 30—31 July 1984, 2 ♂♂, 1 ♀ (of which the female and one male are deposited in ZMB); Kvernavaus, EIS 15, 30 July 1984, 2 ♂♂. Until recently known from British specimens only. Vaillant (1981) has however found the species to be abundant in Swedish Lapland, from where there are several specimens deposited at the University of Lund. He has also shown concinnicauda to be conspecific with Ch. lapponica Frey. The species has also been taken in France and Mongolia.

Chelifera precabunda Collin
RY, Rennesøy: Førsvoll, EIS 14, 26 August 1982, 1 ♀ (RW); RI, Forsand: Songesand, EIS 7, 18 July 1984, 1 ♂; 9 August 1984, 1 ♀; 2 September 1984, 1 ♂; Helmikstøl, EIS 8, 5 September 1982, 1 ♀, (RW); 10 August 1984, 1 ♂; 20 August 1984, 1 ♂; HOI, Voss: 4 km east of Mjølfjell (670 m), EIS 41, 13 July—3 August 1985, 1 ♀ and 3 August—21 September 1985, 2 ♂♂, 3 ♀♀ L. Greve leg. (Malaise trap) (ZMB). Previously known from Great Britain and continental Europe (Vaillant 1981). These are the first records from Scandinavia.

Hemerodromia adulatoria Collin
RY, Rennesøy: Førsvoll, EIS 14, 11 June 1982, 3 ♂♂, 1 ♀ (RW). This is the first record to be published from Scandinavia. It has, however, also been captured near Umeå in Sweden (R. Wagner in litt.). Previously recorded from Great Britain (Collin 1961) and France (Vaillant 1981) only.

Hemerodromia raptoria (Meigen)
RY, Klepp: Øksnevad, EIS 7, 15 June 1982, 1 ♂, 2 ♀♀ (RW); RI, Forsand: Helmikstøl, EIS 8, 4 June 1985, 1 ♂. A distinctive species, previously known from Great Britain, Germany and Sweden (Vaillant 1981).

Trichopeza longicornis (Meigen)
RY, Sandnes: Melshei, EIS 7, 6 July 1982, 2 ♂♂, 2 ♀♀; RI, Forsand: Songesand, EIS 7, 29 June 1983, 1 ♂; 13 August 1983, 1 ♀; 18 July 1984, 2 ♂♂; 2 July 1985, 1 ♂, 2 ♀♀ (of which the male and one female are deposited in ZMB).

Clinocera (s.str.) nigra Meigen
RI, Forsand: Helmikstøl, EIS 8, 20 August 1984, 1 ♀.

C. (Hydrodromia) fontinalis (Haliday)
RY, Rennesøy: Vikevåg, EIS 14, 26 August 1984, 1 ♂ (ZMB); RI, Forsand: Songesand, EIS 7, 13 March 1983, 2 ♂♂, 2 ♀♀ (RW); 22 April 1984, 1 ♀; 28 April 1984, 1 ♂.

C. (Hydrodromia) stagnalis (Haliday)
C. (Hydrodromia) wesmaelii (Macquart)
RI, Forsand: Songesand, EIS 7, 13 April 1982, 1♂; 2 October 1982, 1♀; 13 March 1983, 6♂♂, 2♀♀, 1♂♀ (in copula) (RW) (1♂, 1♀ in ZMB); 31 March 1983, 1♀; 1 April 1983, 1♀.

ACKNOWLEDGEMENTS
My sincere thanks go to F. Midtgaard, A.-J. Nilsen, K. Rognes and S. Svendsen for the gifts of material; to L. Greve Jensen for help with literature, information and loan of specimens from ZMB; to Dr. M. Barták, Pecky, and Dr. R. Wagner, Schlitz, for kindly having checked some of my identifications; and to Mr. Tor Aasen, Sjernarøy, for checking the language.

REFERENCES

Received 2 June 1986
Influence of temperature on the egg-stage of *Capnopsis schilleri* (Plecoptera; Capniidae)

ØYVIND HÅLAND

The egg incubation time, the hatching success and the duration of the hatching of eggs of *Capnopsis schilleri* were studied at seven different constant temperatures (2°–24°C) in the laboratory. The mean incubation time in the interval 4°–20°C could be described by the equation \(Y = 429.7T^{-1.24} \) where \(Y \) is time in days and \(T \) is temperature. Eggs did not hatch at 2°C, and only a few at 24°C, where they needed more time than at 20°C. The eggs needed on average 264 day-degrees to hatch.

Øyvind Håland, Zoological Museum, University of Oslo, Sarsgt. 1, N-0562 Oslo 5, Norway.
Present address: Horvnesvtn. 106, 8800 Sandnessjøen, Norway.

INTRODUCTION

In their study of the egg biology of the stonefly *Capnia atra* Morton, Brittain et al. (1984) found that different populations differed in egg size and size of 1st instar nymphs, but showed basically the same relationship between egg incubation time and temperature. The last mentioned fact made it possible also to predict the hatching time of eggs from other populations.

One aim of the present study was to investigate the relationship between egg incubation time and temperature in a population of *Capnopsis schilleri* (Rostock) in the vicinity of Oslo. *C. schilleri* is distributed throughout most of Europe, and has also been found in Tunisia in North Africa (Berthélemy 1973). It is thus subjected to very different environmental conditions, but still probably maintains a univoltine life cycle everywhere (Berthélemy 1973, Lillehammer 1975b). A paper under preparation will report on the study of the life cycle of *C. schilleri* in the stream Sæterbekken near Oslo, where the eggs for this study were collected.

Another aim of this study was to see if there is any tendency towards ovovivipary in *C. schilleri*. This phenomenon has been observed in other species of the Capniidae (see i.e. Harper & Hynes 1972).

The egg biology of *C. schilleri* has been studied to some degree before by Berthélemy (1973) under fluctuating temperatures, and by Lillehammer (1975b) under 4°C constant temperature. Lillehammer (1975b) found quite great differences in egg incubation time for two different egg batches of *C. schilleri*.

MATERIAL AND METHODS

Adult of *C. schilleri* were captured by the stream Sæterbekken near Oslo, Norway, in May and June 1978 and 1979. The stream is described by Lillehammer (1975a), who also gives temperature data for the stream over a period of three years. The adults were brought to the laboratory in plastic boxes, 10–20 individuals in each box. In the boxes were also some moss, twigs, leaves, and a small petri dish with water from the stream. The flies copulated in the boxes and laid their eggs in the dish. By having many flies in the same box I got many eggs, but there might be several females who deposited their eggs in the dish at the same time, so I could not know the size of the individual egg batches. In the following the eggs found in a dish at one time is treated as one egg batch. When eggs were found in a dish, the dish was removed, the eggs were counted, and the dish was placed in an incubator, while a new dish was put in its place.

6521 eggs in 25 batches were deposited.
The incubators, with almost constant temperature (±0.5°C) and constant darkness, were set at 4°C intervals: 4, 8, 12, 16, 20 and 24°C. A cold room at approximately 2°C (±1°C) was also used. The eggs were inspected daily for hatching until all eggs had hatched or the remaining eggs were either discoloured or destroyed by fungi. The incubation time of the whole egg batch was considered to be the time from the egg laying until 50% of the eggs that eventually would hatch had hatched (Brittain 1977).

Table 1. Number of eggs laid (N) and hatched (N'), % hatching, mean incubation time and variation in incubation time for egg batches of C. sehilleri.

<table>
<thead>
<tr>
<th>Temp.</th>
<th>N</th>
<th>N'</th>
<th>Hatch. %</th>
<th>Mean. Ink. time</th>
<th>Var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>113</td>
<td>54</td>
<td>47.8</td>
<td>77</td>
<td>68-93</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>5</td>
<td>7.2</td>
<td>68</td>
<td>67-69</td>
</tr>
<tr>
<td>8</td>
<td>334</td>
<td>329</td>
<td>98.5</td>
<td>38</td>
<td>30-45</td>
</tr>
<tr>
<td></td>
<td>832</td>
<td>811</td>
<td>97.5</td>
<td>39</td>
<td>30-55</td>
</tr>
<tr>
<td></td>
<td>525</td>
<td>504</td>
<td>96.0</td>
<td>37</td>
<td>30-48</td>
</tr>
<tr>
<td>12</td>
<td>182</td>
<td>180</td>
<td>98.9</td>
<td>20</td>
<td>19-27</td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>294</td>
<td>99.7</td>
<td>18</td>
<td>15-25</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>39</td>
<td>86.7</td>
<td>16</td>
<td>15-17</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>24</td>
<td>38.7</td>
<td>20</td>
<td>18-22</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>320</td>
<td>88.9</td>
<td>23</td>
<td>18-26</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>190</td>
<td>54.3</td>
<td>22</td>
<td>19-30</td>
</tr>
<tr>
<td>16</td>
<td>119</td>
<td>119</td>
<td>100.0</td>
<td>11</td>
<td>9-15</td>
</tr>
<tr>
<td></td>
<td>899</td>
<td>894</td>
<td>99.4</td>
<td>15</td>
<td>11-25</td>
</tr>
<tr>
<td></td>
<td>186</td>
<td>157</td>
<td>84.4</td>
<td>14</td>
<td>10-18</td>
</tr>
<tr>
<td>20</td>
<td>137</td>
<td>137</td>
<td>100.0</td>
<td>11</td>
<td>9-15</td>
</tr>
<tr>
<td></td>
<td>266</td>
<td>264</td>
<td>99.3</td>
<td>11</td>
<td>9-13</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>48</td>
<td>96.0</td>
<td>10</td>
<td>10-16</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>62</td>
<td>100.0</td>
<td>9</td>
<td>7-12</td>
</tr>
<tr>
<td>24</td>
<td>19</td>
<td>11</td>
<td>57.9</td>
<td>10</td>
<td>9-14</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>63</td>
<td>9.7</td>
<td>13</td>
<td>9-15</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>4</td>
<td>30.8</td>
<td>12</td>
<td>11-21</td>
</tr>
</tbody>
</table>

N = 6521 N' = 5247

Fig. 1. The mean incubation time of egg batches of C. sehilleri plotted on log. paper with regression line.

RESULTS

The results of the egg incubation studies are given in Tab. 1, and pooled for each temperature in Fig. 1. The egg incubation time which was clearly dependent on temperature, decreased as the temperature increased. The eggs did not hatch at 2°C and only a few hatched at 24°C. At this high temperature it seems that the incubation time increased again, but this might be an artifact caused by the low number of eggs. If the data from 24°C are ignored, the rest fit very well the regression line $Y = 429.7 - 1.24T$ (r = 0.985) where Y is time in days and T is temperature in °C.

The eggs hatched with no sign of delayed hatching with the possible exception of 24°C. The hatching success varied with temperature (see Tab. 1), and also for different egg batches. The highest hatching success was in the temperature interval of 8—20°C, but one egg batch at 4°C also had a very high hatching success.

The eggs needed on average 264 day-degrees above 0°C to hatch, but the variation was big; 120—500 day-degrees (Fig. 2). The lowest heatsum was needed between 12 and 20°C.

The method used does not allow an assessment of the number of eggs deposited in each
Fig. 2. Day-degrees needed for eggs at different temperatures. The stippled line is the mean for all temperatures. The mean value for each temperature is also indicated.

egg batch from each female, since several females could have laid eggs in the same dish at the same time.

Newly laid eggs did not show any visible sign of an embryo.

DISCUSSION

The egg incubation time of *C. schillleri* is clearly temperature dependent. Other factors influencing the incubation time are individual variation within the egg batch and variation between egg batches from different females, as well as differences between the different egg batches from a single female. The same pattern is revealed in the study of Brittain (1977) on *Taeniopteryx nebulosa* (L.) (Taeniopterygidae) and the studies of Saltveit (1977), Brittain (1978) and Rekstad (1979) on different species of Nemouridae, though with different inclination of the regression line for the different species. Lillehammer (1975b) found different incubation time for different egg batches at the same temperature for several species of Capniidae, Nemouridae and Leuctridae. Late in this study I started wondering whether the size of the egg batch had any influence on the incubation time and especially on the hatching success, since some of the smallest batches differed a little from the others. This might be because these batches were the last of several batches from the same female, but with smaller resources. It would be interesting to follow this line of investigation further.

Probably there are also differences between different populations regarding the relationship between incubation time and temperature. Brittain (1978) and Rekstad (1979), who investigated populations of *Nemurella pictetii* Klapalek from a high mountain site and a lowland site respectively, found some differences. But Brittain et al. (1984) found that population differences made no significant contribution to variation in egg incubation time in *Capnia atra*. Probably the results of this study are generally applicable to other populations of *C. schillleri*, but some variation is to be expected. The only study that has been made of another population is the study of Berthélemy (1973) from Tunisia, but he used fluctuating temperatures, so it is difficult to make a direct comparison.

The high hatching success at very diverse temperatures would indicate that *C. schillleri* could thrive under very different environmental conditions, no one temperature being clearly optimal for the egg stage. Since there was no sign of diapause or delayed hatching or ovoviviparity, the regulation of the life cycle to suit the different conditions the species will meet must be in other stages of the life cycle, namely the nymphal stage. Berthélemy (1973) says that *C. schillleri* in Tunisia has a diapause in the larval stage during the hot summer.

The egg development of *C. schillleri* in Norway is quick; 6 eggs hatched after only 7 days in one egg batch at 20°C. Since the eggs were inspected only once every day there is a possibility that these eggs were laid nearly one day before the batch was registered and hatched just before the first nymphs were discovered. This could mean that the real development time is 8 days and not 7. This applies to all the eggs on all temperatures of course, but is a relatively greater source of error at the highest temperatures. To have exact development time one would have to inspect the eggs much more often, but this is not always possible.

ACKNOWLEDGEMENTS

Many thanks are due to Curator Dr. Phil. A. Lillehammer for supervising the study and giving good advice, to Cand. real. Jan Brekke for help with the statistics and to Cand. phil. Knut Pettersen for correcting the English.

REFERENCES

Received 24 June 1986
Distribution and seasonal abundance of adult stoneflies (Plecoptera) in the Dovrefjell National Park, South Norway*

JOHN O. SOLEM, JARLE STEINKJER AND SIMEN BRETTEN

Emergence traps and Malaise traps used at 12 sites in the Dovrefjell National Park caught 24 species of adult stoneflies. Their relative abundance and the number of sites each species were collected at, showed that 13 species, Arcynopteryx compacta, Diura nanseni, Isoperla obscura, Brachyptera risi, Amphinemura standfussi, A. sulcicollis, Nemoura cinerea, Nemurella pictetii, Protonemura meyeri, Capnia atra, Leuctra fusca, L. hippos and L. nigra were widespread and common in the National Park. The remaining 11 species had a restricted distribution, but may be locally abundant. Diura bicaudata, Dinocras cephalotes, Siphonoperla burmeisteri, Amphinemura borealis, Nemoura avicularis, and Capnia pygmaea were collected at one site only.

Simen Bretten, University of Trondheim, Kongsvoll Biological station, N-7340 Oppdal, Norway.

INTRODUCTION

In a large scale the stonefly fauna of Norway is well known, and the greatest contribution to the occurrence and distribution is given by Lillehammer (1973, 1974). However, the stonefly fauna, or for that matter, the insect fauna of our national parks is almost unknown. From general knowledge of the distribution of insect species, we can predict that a given species will be present in e.g. the Dovrefjell National Park, but nothing is known about the actual number of species, which species are common and widespread, which are locally distributed, which are rare, species abundances and composition of insect communities. This holds for all the national parks in Norway. Our national parks are protected against major disturbances and they should be excellent reference areas for life sciences. Today our national parks are reference areas of spectacular topography, a few for vegetation, birds and mammals, but none for insects. Scientific documentation is a necessary requisite before an area can be considered a reference area, and the present paper give data on the distribution, abundance and flight periods of the stonefly fauna in the Dovrefjell National Park.

STUDY AREA AND METHODS

The study area was the surroundings of Kongsvoll Biological Station (62°17’N, 09°59’E) between the elevations 870 m and 1452 m in the Dovrefjell National Park, South Norway (Fig. 1). The River Driva is the main water course into which all the smaller streams empty. In general, the streams are fastflowing, except for Jerosbekken. Sampling was made at eight streams and the River Driva. Two-sided Malaise traps (Fig. 2) and emergence traps of the tent type (Fig. 3) were used, and the sampling covered the period late May to October. Solem (1985) gives a table of the number of Malaise traps at the streams and the years they were used. At Vestbekken and Kvernbekken only emergence traps were used, 16 and 4 traps, respectively. Following the definitions of the biotic zones in Sjörs (1967) and Rönnung (1972), the sampling covered the sub-alpine, low and

* Printing grant given by Kongsvoll biological station.
the middle alpine zones, with six, five and one sampling site for traps, respectively. Additionally, sweep-net catching and handpicking were done at the 1500 to 1600 m a.s.l.

Two large geological regions in the southern Scandinavian Calidonides meet in the field area, and the border roughly follows the River Driva. On the eastern side is the Trondheim region, which contains mainly medium-grade mica schists and green-stones of cambro-silurian age. The western side is mainly a basal gneiss region built up of high-grade gneisses and schists of precambrian age.

The climate of the area is mainly continental, with a yearly precipitation of 473 mm at Kongsvoll. The yearly mean temperature at Hjerkinn (959 m a.s.l. and 10 km south of...
Table 1. Percentage composition of Plecoptera in Malaise traps at different streams in the alpine zones.

<table>
<thead>
<tr>
<th></th>
<th>Midle alpine zone</th>
<th>Upper part low alpine zone</th>
<th>Lower part low alpine zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gluptjern 1452 m</td>
<td>Stropla 1289 m</td>
<td>Blesbekken 1350 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blesbekken 1200 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kallvella 1220 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Raubekken 1100 m</td>
</tr>
<tr>
<td>Arcynopteryx compacta</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Brachyptera risi</td>
<td>2.8</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>Diura nanseni</td>
<td>-</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Isoperla obscura</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Amphinemura sulcicollis</td>
<td>5.6</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>A. standfussi</td>
<td>-</td>
<td>42.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Nemoura cinerea</td>
<td>-</td>
<td>35.4</td>
<td>3.9</td>
</tr>
<tr>
<td>Nemurella pictetii</td>
<td>69.4</td>
<td>-</td>
<td>18.1</td>
</tr>
<tr>
<td>Protonemura meyeri</td>
<td>16.7</td>
<td>19.5</td>
<td>0.9</td>
</tr>
<tr>
<td>Capnia atra</td>
<td>2.8</td>
<td>0.7</td>
<td>95.0</td>
</tr>
<tr>
<td>Capnopsis schilleri</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leuctra fusca</td>
<td>-</td>
<td>-</td>
<td>12.3</td>
</tr>
<tr>
<td>L. hippopus</td>
<td>2.8</td>
<td>-</td>
<td>1.6</td>
</tr>
<tr>
<td>L. nigra</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Total number</td>
<td>36</td>
<td>573</td>
<td>1009</td>
</tr>
</tbody>
</table>

Kongsvoll) is —0.1°C, and only 19 days a year have daily mean temperatures above 10°C (Nordhagen 1943).

RESULTS

Middle alpine zone

Only a small collection is present from this zone, and Brachyptera risi (Morton), Amphinemura sulcicollis Stephens, Nemurella pictetii Klapálek, Protonemura meyeri Pictet, Capnia atra Morton, and Leuctra hippopus Kempney were captured as adults in Malaise traps at Gluptjern (Tab. 1). At Stridåtjønnin (about 1500 m a.s.l.). Arcynopteryx compacta McLachlan was collected.

Low alpine zone

In the upper part of the low alpine zone (Tab. 1) and in addition to the species captured in the middle alpine zone, A. compacta, Diura nanseni (Kempney), Isoperla obscura (Zetterstedt), Leuctra nigra (Oliver), Amphinemura standfussi Ris and Nemoura cinerea (Retzius) were caught. Dominant species at the various streams were A. standfussi, N. cinerea, P. meyeri, and C. atra. C. atra outnumbered other species at Blesbekken.

In the lower part of the low alpine zone Capnopsis schilleri (Rostock) and Leuctra fusca Linnaeus can be added to the list of species from higher elevation. P. meyeri outnumbered other species in the catches at Kallvella. N. cinerea and N. pictetii were dominant species at Raubekken, and I. obscura, N. pictetii, C. atra and L. fusca at Blesbekken.

Sub-alpine zone

Twenty-three species were recorded (Tabs. 2 and 3), and additional to those mentioned earlier are Diura bicaudata (Linnaeus), Isoperla difformis (Klapa'lek), Isoperla grammatica (Poda), Dinocras cephalotes Curtis, Siphonoperla burmeisteri (Pictet), Taeniopteryx nebulosa (Linnaeus), Amphinemura borealis Morton, Nemoura avicularis Morton, Capnia bifrons (Newman), and Capnia pygmaea (Zetterstedt).

47
Table 2. Percentage composition of Plecoptera in Malaise traps at different streams in the sub-alpine zone.

<table>
<thead>
<tr>
<th>Species</th>
<th>Vestbekken</th>
<th>Kvernbekken</th>
<th>Rlesbekken</th>
<th>Raubekken</th>
<th>Norway</th>
<th>B?Q m</th>
<th>Driva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vestbekken (1000 m)</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Diura bicaudata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D. nanseni</td>
<td>0.4</td>
<td>0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoperla difformis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I. grammatica</td>
<td>-</td>
<td>2.4</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>I. obscura</td>
<td>2.4</td>
<td>0.9</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dinocras cephalotes</td>
<td>-</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Taeinoperla burmeisteri</td>
<td>-</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brachyptera rasi</td>
<td>2.1</td>
<td>1.8</td>
<td>0.002</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amphinemura borealis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Memura avicularis</td>
<td>-</td>
<td>-</td>
<td>2.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N. cinerea</td>
<td>17.1</td>
<td>11.9</td>
<td>1.0</td>
<td>5.5</td>
<td>23.9</td>
<td>69.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Nemurella pictetii</td>
<td>13.0</td>
<td>2.0</td>
<td>0.05</td>
<td>3.0</td>
<td>1.2</td>
<td>0.88</td>
<td>0.05</td>
</tr>
<tr>
<td>Capnia afta</td>
<td>1.5</td>
<td>0.7</td>
<td>0.09</td>
<td>0.02</td>
<td>0.1</td>
<td>0.002</td>
<td>-</td>
</tr>
<tr>
<td>C. bifrons</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.004</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. fusca</td>
<td>12.7</td>
<td>0.2</td>
<td>24.7</td>
<td>12.7</td>
<td>6</td>
<td>184</td>
<td>67</td>
</tr>
<tr>
<td>L. hippopus</td>
<td>1.0</td>
<td>0.2</td>
<td>30.7</td>
<td>18.6</td>
<td>18.2</td>
<td>5.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Total number</td>
<td>2378</td>
<td>3699</td>
<td>43946</td>
<td>307</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Percentage composition of Plecoptera in emergence traps in 1978.

<table>
<thead>
<tr>
<th>Species</th>
<th>Vestbekken</th>
<th>Kvernbekken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphimemura standfussi</td>
<td>53.3</td>
<td>15.0</td>
</tr>
<tr>
<td>Nemoura cinerea</td>
<td>20.2</td>
<td>23.1</td>
</tr>
<tr>
<td>Nemurella pictetii</td>
<td>11.4</td>
<td>39.3</td>
</tr>
<tr>
<td>Brachyptera rasi</td>
<td>5.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Leuctra nigra</td>
<td>3.3</td>
<td>16.5</td>
</tr>
<tr>
<td>L. hippopus</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>L. fusca</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Isoperla difformis</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Protonemura meyeri</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>L. obscura</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Arcynopteryx compacta</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Diura nanseni</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Capnia bifrons</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Capnopsis schilleri</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Total number</td>
<td>430</td>
<td>642</td>
</tr>
</tbody>
</table>

Table 4. Flight periods of Plecoptera in the Dovrefjell mountains 1980 to 1983 given as number of specimens collected at weekly intervals.

<table>
<thead>
<tr>
<th>Species</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcynopteryx compacta</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Diura bicaudata</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>D. nanseni</td>
<td>101</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Isoperla difformis</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>I. grammatica</td>
<td>108</td>
<td>21</td>
<td>37</td>
<td>441</td>
<td>293</td>
<td>139</td>
</tr>
<tr>
<td>I. obscura</td>
<td>699</td>
<td>8</td>
<td>79</td>
<td>29</td>
<td>67</td>
<td>109</td>
</tr>
<tr>
<td>Dinocras cephalotes</td>
<td>499</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Taeinoperla burmeisteri</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Brachyptera rasi</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Amphinemura borealis</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>A. standfussi</td>
<td>1206</td>
<td>4</td>
<td>98</td>
<td>116</td>
<td>127</td>
<td>134</td>
</tr>
<tr>
<td>A. sulcillolls</td>
<td>1664</td>
<td>5</td>
<td>1142</td>
<td>434</td>
<td>726</td>
<td>8684</td>
</tr>
<tr>
<td>Memura avicularis</td>
<td>1274</td>
<td>251</td>
<td>499</td>
<td>67</td>
<td>189</td>
<td>202</td>
</tr>
<tr>
<td>N. cinerea</td>
<td>2525</td>
<td>3</td>
<td>15</td>
<td>172</td>
<td>219</td>
<td>184</td>
</tr>
<tr>
<td>Nemurella pictetii</td>
<td>4216</td>
<td>16</td>
<td>177</td>
<td>367</td>
<td>534</td>
<td>725</td>
</tr>
<tr>
<td>Protonemura meyeri</td>
<td>7306</td>
<td>1</td>
<td>57</td>
<td>64</td>
<td>675</td>
<td>3555</td>
</tr>
<tr>
<td>Capnia atra</td>
<td>1602</td>
<td>9</td>
<td>106</td>
<td>66</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>C. bifrons</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C. pygmaea</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Leuctra fusca</td>
<td>11265</td>
<td>66</td>
<td>224</td>
<td>553</td>
<td>300</td>
<td>869</td>
</tr>
<tr>
<td>L. hippopus</td>
<td>13600</td>
<td>3636</td>
<td>2265</td>
<td>335</td>
<td>1747</td>
<td>3219</td>
</tr>
<tr>
<td>L. nigra</td>
<td>726</td>
<td>7</td>
<td>137</td>
<td>130</td>
<td>163</td>
<td>64</td>
</tr>
</tbody>
</table>
Table 5. Dates when 50% of annual catch of selected species of Plecoptera were obtained in Malaise trap sampling during 1980 to 1983.

<table>
<thead>
<tr>
<th>Species</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcynopteryx compacta</td>
<td>7 July</td>
</tr>
<tr>
<td>Diura nanseni</td>
<td>7 July</td>
</tr>
<tr>
<td>Isoperla difformis</td>
<td>21 July</td>
</tr>
<tr>
<td>I. grammatica</td>
<td>21 July</td>
</tr>
<tr>
<td>I. obscura</td>
<td>18 Aug.</td>
</tr>
<tr>
<td>Brachyptera risi</td>
<td>28 July</td>
</tr>
<tr>
<td>Amphinemura sulcicollis</td>
<td>14 July</td>
</tr>
<tr>
<td>A. standfussi</td>
<td>1 Sept.</td>
</tr>
<tr>
<td>Nemoura avicularis</td>
<td>9 June</td>
</tr>
<tr>
<td>N. cinerea</td>
<td>14 July</td>
</tr>
<tr>
<td>Nemurella pictetii</td>
<td>14 July</td>
</tr>
<tr>
<td>Protonemura meyeri</td>
<td>7 July</td>
</tr>
<tr>
<td>Leuctra hippopus</td>
<td>23 June</td>
</tr>
<tr>
<td>L. nigra</td>
<td>30 June</td>
</tr>
<tr>
<td>L. fusca</td>
<td>22 Sept.</td>
</tr>
</tbody>
</table>

Only in the Raubekken and the Vestbekken did one species, N. pictetii and A. standfussi, respectively, outnumber all other species.

Flight periods

Flight periods from late May to mid October is shown in Tab. 4. The data on the typical late winter species T. nebulosa, C. atra, C. bifrons, and C. pygmaea are only partly correct, because the captures only show the last part of their flight period. The dates when 50% of annual catch of 15 selected species is given in Tab. 5. Thirteen species have the median date in June and July. Only I. obscura had the median date in August, and two species, A. standfussi and L. fusca in September.

DISCUSSION

The Malaise trap captures in the Dovrefjell mountains covered summer and autumn. However, Capnia spp. and T. nebulosa appeared on the snow in April at the river Driva, and only the last part of their flight period was covered, except the site Blesbeken 1350 m where the Malaise trap was left out at a time when only a few meters of the stream was open. Up- and downstream to this open area the stream was completely covered with snow for a distance of several hundreds of meters. The relative abundance of stonefly species based on Malaise trap captures may be biased by shortwinged individuals, which may occur in C. atra, A. standfussi and A. compacta (Lillehammer 1974). L. hippopus may also have shortwinged specimens, but not in the mountains (A. Lillehammer pers. comm.). Populations with shortwinged specimens and reduced flight is likely to be caught in a lower percentage in Malaise traps than populations having longwinged specimens and normal flight ability. If and how much the shortwingedness has affected the data presented is unknown.

Thirteen species, A. compacta, D. nanseni, I. obscura, B. risi, A. standfussi, A. sulcicollis, N. cinerea, N. pictetii, P. meyeri, C. atra, L. fusca, L. hippopus, and L. nigra were captured at six or more sites, and must be regarded as widespread and common. The remaining eleven species have a restricted distribution, but may be locally abundant. D. bicaudata, D. cephalotes, S. burmeisteri, A. borealis, N. avicularis, and C. pygmaea were collected at one site only.

The various sites where collections were made vary in many ways, e.g. topography which may cause differences in the species composition. However, P. meyeri was very abundant at the Kallvella and fairly abundant at the Gluptjern and Stropla. These sites are all in the western montains. P. meyeri was present at the stream Blesbeken on the eastern side also, but represented low percentages of the number of individuals captured. Lillehammer (1974) reported P. meyeri to be most numerous in small streams, and present up to 1300 m a.s.l.. In the Dovrefjell mountains P. meyeri was recorded up to 1452 m a.s.l. The difference in the distribution and abundance of P. meyeri between the eastern and the western side coincides with the differences in geology between the sides, but if the geology is the real reason for the difference is not known. None of the remaining species had a similar pattern of distribution as P. meyeri.

Most of the species recorded in the Dovrefjell National Park are expected to be found,
but from a zoogeographical point of view, a few should be commented on. *I. difformis* was captured at two sites, Jerosbekken and Kvernbeken, and are the westernmost records in the mountains of South Norway. *N. avicularis* was recorded only at Jerosbekken. Nøst (1981) also reports *N. avicularis* from one site only, the lake Lindalsvatn. These two mentioned records are, according to Lillehammer (1974), the westernmost records in the mountains of South Norway.

Lillehammer (1974) recorded 27 stonefly species in the eastern part and 22 species in the western part of the mountain range of South Norway. The present study, which is inbetween the areas reported by Lillehammer (1974), revealed 24 species to inhabit the watercourses of the Dovrefjell National Park. Compared with the eastern area (Lillehammer 1974), we have not recorded *Leuctra digitata*, but *L. digitata* is reported from the stream Grøvu west of the Dovrefjell mountains (Nøst 1981); nor did we find *Nemoura flexuosa* Aubert and *Isoperla nubecula* Newman. The two last mentioned species were neither reported by Nøst (1981) from the western part of the mountains of South Norway.

Lillehammer (1974, 1978) reported four species, *C. atra*, *A. standfussi*, *I. obscura* and *A. compacta* to occur in streams in the middle alpine zone in the Øvre Heimdalen area, Jotunheimen, and only *C. atra* and *A. compacta* are in common with the collections from the Dovrefjell mountains. *B. risi*, *A. sulcicollis* and *L. hippopus* were taken with one or two individuals only in the trap in the middle alpine zone, and are most likely blown in from lower areas.

From the Øvre Heimdalen area in Jotunheimen, Lillehammer (1978) reported 11 and 20 species from the low alpine and sub-alpine zones, respectively, and respectively 16 and 25 for the whole southern Norway (Lillehammer 1985). In the Dovrefjell mountains the corresponding numbers are 14 and 23 species. From a botanical point of view the Dovrefjell area is very rich in species, and a similar pattern may be true also for stoneflies when compared with other mountains areas at similar elevations.

ACKNOWLEDGEMENTS

Support to the field work of this paper has been given by The Norwegian Research Council for Science and the Humanities, grant nos D.65.73-10 and D.65.73-032, given to J.O. Solem.

REFERENCES

Distribution and seasonal abundance of adult Tipulidae (Diptera) in the Dovrefjell National Park, South Norway*

TROND HOFSVANG, JOHN O. SOLEM AND SIMEN BRETten

In Malaise traps from 11 sites 15 species of adult Tipulidae were collected in the Dovrefjell National Park, South Norway; 4 in the middle alpine zone, 11 in the low alpine zone and 10 in the subalpine zone. The only record of *Tipula (Pterelachisus) middendorffi* Lackschewitz in Fennoscandia is reported here. In Norway *Tipula (Savitschekia) pagana* Meigen was earlier only known from the Oslo area and *Nephrotoma lundbecki* (Nielsen) only from North Norway.

Common species were *T. (A.) salicetorum*, *T. (V.) excisa*, *T. (S.) gimmerthali*, *T. (S.) invenusta* and *T. (S.) subnodicornis*. Rare species were *T. (V.) laccata*, *T. (V.) nubeculosa*, *T. (S.) pagana*, *T. (S.) grisescens*, *N. lundbecki* and *P. subserricornis*. The River Driva divide the area sampled into an eastern and a western area and great differences in the species composition between the two areas were found. Data on habitat preferences are given.

Trond Hofsvang, Norwegian Plant Protection Institute, Dept. of Entomology, P.O.B. 70, N-1432 Ås-NLH, Norway.
Simen Bretten, University of Trondheim, Kongsvoll Biological Station, 7340 Oppdal, Norway.

INTRODUCTION

The insect fauna of National Park in Norway is very poorly known. This paper is in a series with aim to increase the knowledge of the insect fauna of the Dovrefjell National Park. Our National Parks are areas with a high degree of protection, and scientific documentation of the fauna will increase the value of the parks as reference areas. Such reference areas are especially important in long term studies of insect communities. Such long term studies may include natural changes in communities and changes caused by external factors which artificially may stress communities, e.g. acid rain.

Tipulidae is worldwide the largest family in the order Diptera, may be divided into three subfamilies, Tipulinae, Cylindrotominae and Limoniinae (Byers 1984). Some investigators erase these subfamilies to families (van Leeuwen 1978, Mendl 1978), and we have adopted this view, and our fam. Tipulidae is comparable to subfam. Tipulinae.

Apart from a few studies (Hofsvang 1972, 1974), only small and irregular sampling of tipulids have been made in Norway. The main objective of the present investigation was to study aquatic insects such as caddisflies (Trichoptera) and stoneflies (Plecoptera). The larvae of most of tipulids are also aquatic or semiaquatic, and adults are usually found along streams and around pools and ponds (Byers 1984). Larval tipulid abundance and distribution in woodland floodplains in North America appear to be influenced by high soil moisture and organic content (Merritt and Lawson 1981). The sampling sites chosen gave a good representative of the tipulid fauna as well, and this is the first comprehensive study of distribution and abundance of tipulids in a defined area in Norway.

* Printing grant given by Kongsvoll biological station.

STUDY AREA AND METHODS

The study area was the surroundings of Kongsvoll Biological Station (62°17'N, 09°59'E) between the elevations 900 and 1452 m (Fig. 1). Two large geological regions in the southern Scandinavian Caledonian meet in the sampling area, and the border roughly follows the River Driva. On the eastern side is the Trondheim region, which contains mainly medium-grade mica schists and gneissosites of the cambro-silurian age. The western side is mainly a basal gneiss region build up of high-grade gneisses and schists of pre-cambrian age. The differences in the geology between the eastern and the western side of the valley are most conspicuous when plant species are considered. The eastern side has a much higher diversity of plant species than the western one. The sampling sites Stropla, Kallvella and Gluptjern (Tab. 2) are on the western side and the remaining sites on the eastern side. The streams and lakes in the Stroplsjø area have pH in the range 6.0 to 6.5, and the lake Kallvellsjøen is about pH 6.8. The River Driva and lakes and streams on the eastern side have pH in the range 7.3 to 7.9 (Bretten unpubl. data).

The climate of the area is mainly continental, with a yearly precipitation of 473 mm at Kongsvoll. The yearly mean temperature at Hjerkinn (955 m a.s.l. and 10 km south of...
Table 1. Tipulidae species recorded in Dovrefjell National Park.

| Species | Malaise trap samples from 11 sites along streams and at pools and lakes, have been used for this presentation. According to Theowald, 1959 the definition of biotic zones in mountainous areas (Sjørs 1967, Rønning 1972), one of the sampling sites was in the middle alpine zone, six in the low alpine zone, and four in the subalpine zone. The middle alpine has patches of plant cover while a continuous plant cover is present in the low alpine zone. The subalpine is in this area characterized by a birch belt. Sampling was carried out during the years 1980—1983 and covered the months June to October. Because of difficulties in identifying females of some of the species, our data include males only. | Number of males collected at the different habitats shown at the bottom line of the table |

Table 1. Percentage composition of males at different habitats in subalpine, low alpine, and middle alpine zones in Dovrefjell National Park.											
Subalpine zone	**Low alpine zone**	**Middle alpine zone**									
Blesbek 1000 m	Raubk 900 m	Gåveli 900 m	Dam 900 m	En 900 m	Blesbek 1200 m	Raubk 1200 m	Dam 1200 m	Kaldv 1100 m	Stropla 1200 m	Gluptj 1480 m	
Tipula (Arctotipula) salicetorum	2.0	53.1									
Tipula (Vestiplex) excisa	3.1	19.0	5.4	18.7	46.8	85.7	34.0	12.5	6.5	10.0	42.9
T. (V.) montana	2.7	7.0	4.1								
T. (V.) laevis	2.0										
T. (V.) nubeculosa	0.7										
Tipula (Savtshenkia) gimmerthalii	72.3	53.3	18.0	8.3	8.5	55.1	12.5	0.5			
T. (S.) invensus	0.1	4.2	28.4	25.0	27.7	8.0	0.4	13.3	24.0	10.2	
T. (S.) subnodicornis	9.2	18.7	1.4	3.8	12.5						
T. (S.) limbata	4.0	0.5	0.7	8.3	0.1						
T. (S.) pagana	1.5										
T. (S.) grisescens	0.7										
Tipula (Platytipula) melanoceros	3.1	2.8	2.7	41.3	14.9	25.0	0.5				
Nephrotoma lundbecki	2.1										
Prinocera subserricornis											
Tipula (Pterelachis) middendorffi	4.5	38.7									
RESULTS

A total of 15 species were recorded in the area sampled (Tab. 1), but only 4 species, *Tipula* (*Vestiplex*) *excisa*, *T. (V.) montana*, *T. (Savshenkia) subnodicornis* and *T. (Pterelachis) middendorffi* were collected in the middle alpine zone (Tab. 2) which is above 1400 m a.s.l. Low numbers of specimens were collected in this zone, but *T. (V.) excisa* and *T. (P.) middendorffi* are certainly true inhabitants of this zone. Eleven species were found in the low alpine zone (which is between about 1100 and 1400 m a.s.l.), and all species caught in the middle alpine zone appeared here. Additionally, the following species occurred: *T. (S.) invenusta*, *T. (S.) gimmerthali*, *T. (Platytipula) melanoceros*, *T. (Arctotipula) salicetorum*, Nephrotoma lundbecki, *T. (V.) laccata*, and Prinocera subsericornis. Dominant species in the collections were *T. (V.) excisa*, *T. (S.) gimmerthali*, *T. (S.) invenusta* and *T. (A.) salicetorum*.

In the subalpine zone ten species were collected. Five species, *T. (V.) montana*, *T. (P.) middendorffi*, *T. (A.) salicetorum*, *T. (V.) laccata* and *P. subsericornis*, recorded in the alpine zone were not recorded in the subalpine zone. Species only recorded in the subalpine zone were *T. (S.) pagana*, *T. (S.) grisescens* and *T. (V.) nubeculosa*. Abundant species in the subalpine collections were *T. (S.) gimmerthali*, *T. (S.) invenusta* and *T. (P.) melanoceros*. The tipulids were flying from early June to October (Tab. 3). In the Dovrefjell area June belong to spring/early summer, July—August is summer and September—October is autumn. Spring species are *T. (V.) nubeculosa*, *T. (S.) subnodicornis*, *T. (S.) pagana*, and *T. (S.) grisescens*. Summer species are *T. (A.) salicetorum*, *T. (V.) excisa*, *T. (V.) montana*, *T. (V.) laccata*, N. lundbecki, *T. (P.) middendorffi* and *P. subsericornis*. Autumn species are *T. (S.) gimmerthali*, *T. (S.) invenusta* and *T. (S.) subsericornis*. *T. (P.) melanoceros* seems intermediate between summer and autumn species.

DISCUSSION

The flight periods of the species of Tipulidae in the Dovrefjell mountains are in accordance with those reported from two localities in Northern Sweden, the Messaure area, Lule Lappmark (Tjeder 1974), and the Abisko

| Table 3. Flight periods of Tipulidae (Diptera) in the Dovrefjell mountains 1980 to 1983 shown as number of males collected in weekly intervals in Malaise traps |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | June | July | Aug | Sept | Oct |
| Tipula (Arctotipula) salicetorum | | 2 2s 1 1 2 1 |
| Tipula (Vestiplex) excisa | 3 12 92 10y 2s 25 14 1 |
| T. (V.) montana | 8 9 2 |
| T. (V.) laccata | 1 |
| T. (V.) nubeculosa | 1 |
| Tipula (Savshenkia) gimmerthali | 2 1o 48 102 42 5 58 24 |
| T. (S.) invenusta | 1 12 3s 57 30 5 2 |
| T. (S.) limbata | 2 1 2 1 1 |
| T. (S.) subnodicornis | 5 27 10 8 5 2 |
| T. (S.) pagana | 1 |
| T. (S.) grisescens | 1 1 |
| Tipula (Platytipula) melanoceros | 3 14 5 |
| Tipula (Pterelachis) middendorffi | 1 5 3 |
| Nephrotoma lundbecki | 1 |
| Prinocera subsericornis | 1 |
area, Torne Lappmark (Tjeder 1978). Except T. (S.) pagana and T. (P.) middendorffi the species found at Dovrefjell were included also in the Swedish investigations mentioned above. T. (V.) excisa, T. (S.) invenusta, T. (S.) subnodiicornis and T. (S.) grisescens had nearly similar flight periods at Dovrefjell mountains and the low/middle alpine zone at Finse in the northern part of Hardangervidda, South Norway (Hofsvang 1974). Therefore, in the Scandinavian mountains from Hardangervidda, South Norway to Abisko, Torne Lappmark, the flight periods of the tipulid species do not deviate much.

The species of Tipulidae reported in the present study are found within the previously known distribution area in Norway except T. (S.) pagana, T. (P.) middendorffi and N. lundbecki. T. pagana was earlier only known from the Oslo area in Norway, but is recorded north to Ångermanland in Sweden (Tjeder 1955). T. (P.) middendorffi a boreal species and previously known from USSR east of Arkhangelsk (Theowald 1980), is reported new to Fennoscandia. N. lundbecki was earlier reported from North Norway (Mannheims 1951).

Of the 15 species collected from the Dovrefjell mountains, six species, T. (V.) excisa, T. (V.) montana, T. (S.) gimmerthali, T. (S.) limbata, T. (S.) subnodiicornis and T. (S.) grisescens, show a borealpine disjunct distribution (Theowald & Oosterbroek 1985), which means that they are recorded in the continental European Alps and in the Scandinavian mountains. Five species have a boreal distribution, T. (A.) salicetorum, T. (V.) laccata, T. (S.) invenusta, T. (P.) middendorffi and N. lundbecki. With the exception of T. (S.) invenusta, these boreal species belong to a group of species with a mainly eastern Palearctic distribution (Theowald & Oosterbroek 1985). T. (V.) nubeculosa, T. (S.) pagana, T. (P.) melanoceros and P. sub serricornis are distributed in Northern Europe, but they are also a part of the tipulid fauna of the deciduous forests of the western and middle part of the European lowland (Theowald & Oosterbroek 1983).

Considering the number of specimens caught during 1980 to 1983 5 species, T. (A.) salicetorum, T. (V.) excisa, T. (S.) gimmerthali, T. (S.) invenusta and T. (S.) subnodiicornis may be regarded as common of fairly common in the Dovrefjell National Park. All of these common species, except T. (A.) salicetorum, were found in more than half of the number of localities sampled. T. (A.) salicetorum occurred in two traps only, at Kallvella and Stropla, and may set strong requirements to the habitat, but be locally abundant.

Six species, T. (V.) laccata, T. (V.) nubeculosa, T. (S.) pagana, T. (S.) grisescens, N. lundbecki and P. sub serricornis must be regarded as rare in Dovrefjell National Park because they were only recorded at one locality and with one individual only. T. (A.) salicetorum and T. (P.) middendorffi were collected at two sites and on the western side only. The collections indicate that they have a restricted distribution in the area. T. (V.) montana was caught at the 4 highest collecting sites only. T. (S.) gimmerthali, T. (S.) limbata and T. (P.) melanoceros were recorded up to about 1200 m a.s.l. From tab. 2 it may look like that they are distributed only on the eastern side of the valley. This may be an artefact because of the collecting sites chosen. However, it is known from caddis-flies (Trichoptera) that great differences in species composition occur between the eastern and western side of River Driva (Solem 1985). The caddisfly Apatania multiabris McLachlan was dominant in the streams Blesbekken and Raubekken on the eastern side, but only scattered individuals were found on the western side. The differences found in geology, plant species and pH values between the eastern (range 7.3 to 7.9) and the western side (range 6.0 to 6.8) of the valley, may be reflected also in the species composition of the tipulids, but the present study does not give conclusive answers to this.

T. (V.) excisa on the other hand, was common at all sites and all height levels in the alpine zone on the eastern and the western side of the valley, and live in habitats rich in organic matter and in the present study have pH values between 6.0 to 7.9. T. (S.) invenusta showed a similar range in habitat preferences as T. (V.) excisa. Most tipulid larvae are detrital feeders (Byers 1984) and their ecological importance must be substantial in alpine areas. However, since tipulid larvae and adults are relatively large insects their ecological importance as food for other invertebrates, birds and mammals is probably even greater.
ACKNOWLEDGEMENTS

Support to the field work was given by The Norwegian Research Council for Science and the Humanities, grant nos D.65.73-10 and D.65.73-032, given to J.O. Solem.

REFERENCES

Received 15 Sept. 1986.
Distribution, abundance and phenology of adult Neuropteroidea (Orders Planipennia, Raphidioptera and Megaloptera) and Mecoptera in the Dovrefjell mountains, South Norway*

LITA GREVE, JOHN O. SOLEM AND SIMEN BRETTEN

Twelve species of Neuropteroidea and Mecoptera were collected in the Dovrefjell mountains. None were found in the middle alpine zone, but six and all twelve species were collected in the low and subalpine zones, respectively. Two species were common, *Hemerobius pini* Stephens, 1836 and *Wesmaelius nervosus* (Fabricius, 1793), while *Chrysopelea carnea* (Stephens, 1836), *Helicoconis lutea* (Wallengren, 1871), *Microtus pagonus* (L., 1767), *Hemerobius nitidulus* Fabricius, 1777, *H. perelegans* Stephens, 1836, *Wesmaelius malladai* (Navas, 1925), *W. mortoni* (McLachlan, 1899), *Stalis lutaria* (L., 1758), and *Boreus* sp. were rare. Because *W. mortoni* always occur with only a few specimens in collections, it is suggested that this species is rare in its whole area of distribution. *H. stigma* was collected as late as in October and is probably an autumn species. Adults of the remaining species were present in July and August and must be regarded as summer species.

INTRODUCTION

The insect fauna of National Parks in Norway is poorly known. This paper is in a series which aim to increase the knowledge of the insect fauna of the Dovrefjell National Park. Norwegian National Parks are areas with a high degree of protection, and scientific documentation of the fauna will increase the value of the parks as reference areas. Such reference areas are especially important in long term studies of insect communities and changes caused by external factors.

The superorder Neuropteroidea (Neuroptera s.l.) is divided in three orders: Planipennia (Neuroptera s. str.), Raphidioptera and Megaloptera. Planipennia is the largest of the three and is represented in Norway with five families: Hemerobiidae, Chrysopidae, Coniopterygidae, Sisyridae and Myrmeleontidae. The first three are represented in the material. The two last orders are small, and each represented with only one family in Norway. This paper also deals with the small order Mecoptera represented in Norway with two families, of which only one, the Boreidae, have been found in the Dovrefjell National Park. The nomenclature for the Neuropteroidea follows Aspöck & Hözel (1980). For the genus *Boreus*, see Svensson (1972).

A survey of the Norwegian Neuropteroidea and Mecoptera was made by Tjeder (1945), and since then several authors have added knowledge to the distribution and biology in Norway of single species or genera, but no larger survey has been made. Most of the published articles are enclosed in Aspöck et al. (1980). For additional information on Norwegian Mecoptera, see Greve (1965, 1975).

The main objective of the present investigation was to study aquatic insects. However, only the order Megaloptera have aquatic larvae of the group treated here, though a few larvae of Planipennia in families not found in this survey are also aquatic. The sites of Ma-

* Printing grant given by Kongsvoll biological station.
Malaise traps along streams and pools and lakes are thus not the best possible for collecting Neuroptera. In spite of that, the material gives interesting data from montane areas. On the other hand, Malaise traps give good information during periods of bad weather when nets are difficult to use efficiently.

STUDY AREA AND METHODS

The study area was the surroundings of Kongsvoll Biological Station (62°17’N, 09°59’E) between the elevations 900 and 1452 m (Fig. 1). The two large geological regions in the southern Scandinavian Caledonian meet in the sampling area, and the border roughly follows the River Driva. On the eastern side is the Trondheim region, which contains mainly medium-grade mica schists and greenstones of the cambro-silurian age. The western side is mainly a basal gneiss region built up of high-grade gneisses and schists of pre-cambrian age. The differences in the geology between the eastern and the western side of the valley are most conspicuous when plant species are considered. The eastern side has a much higher diversity of plant species than the western one. The sampling sites Stropla, Kaldvella and Gluptjern (Tab. 2) are on the western side and the remaining sites on the eastern side. The streams and lakes in the Stroplsjø area have pH in the range 6.0—6.5, and the lake Kallvellsjøen is about pH 6.8. The River Driva and the lakes and the streams on the eastern side have pH in the range 7.3—7.9 (Bretten unpubl. data).

The climate of the area is mainly continental, with a yearly precipitation of 473 mm at Kongsvoll. The yearly mean temperature at Hjerkinn (955 m a.s.l.) 10 km south of Kongsvoll, is —0.1°C, and only 19 days a year have daily mean temperature above 10°C (Nordhagen 1943).

Malaise trap samples from 11 sites along streams and at pools and lakes have been used for this presentation. According to the definition of biotic zones in mountainous areas.
Table 1. Number of specimens (males/females) at different habitats in subalpine and low alpine zones in Dovrefjell National Park. Numbers of specimens collected at the different habitats shown at the bottom line of the table.

<table>
<thead>
<tr>
<th></th>
<th>Subalpine zone</th>
<th>Low alpine zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blesbk</td>
<td>Raubk</td>
</tr>
<tr>
<td></td>
<td>1000 m</td>
<td>900 m</td>
</tr>
<tr>
<td>Sialis lutaria (L., 1758)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Helicoconis lutea (Wallengren, 1871)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemerobius pini Stephens, 1836</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemerobius nitidulus Fabr., 1777</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemerobius perelegans Stephens, 1836</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hemerobius stigma Stephens, 1836</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Micromus paganus (L., 1767)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesemius malloai (Navas, 1925)</td>
<td>-</td>
<td>1/-</td>
</tr>
<tr>
<td>Mesemius mortoni (McLachlan, 1899)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesemius nervosus (Fabr., 1793)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chrysoperla carnea (Stephens, 1836)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boreus westwoodi Hagen, 1866</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of specimens</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>
(Sjørs 1967, Rønning 1972), one of the sampling sites was in the middle alpine zone, six in the low alpine zone, and four in the subalpine zone. The middle alpine has patches of plant cover while a continuous plant cover is present in the low alpine zone. The subalpine is in this area characterized by a birch belt. Sampling was carried out during the years 1980—1983 and covered the months June to October.

RESULTS

A total of 12 species were recorded in this study. No species were collected in the middle alpine zone (see Tab. 1), viz. above 1400 m a.s.l. Six species were found in the low alpine zone, between 1100 and 1400 m a.s.l. These are Helicoconis lutea, Hemerobius perelegans, H. stigma, Micromus paganus, Wesmaelius malladai and W. nervosus. H. perelegans was recorded only in the low alpine zone.

Two species were dominant in the samples, H. pini and W. nervosus. The remaining species were represented by single or few specimens only. One should, however, keep in mind that the number of specimens of these groups usually are rather low also in more favourable localities in Norway, and that mass occurrence is rarely seen.

In the subalpine zone 10 species were collected. Species recorded only in the subalpine zone are Sialis lutaria, Chrysoperla carnea, H. nitidulus, W. mortoni, and Boreus sp. The genus Boreus was represented by females only, and because these are difficult to identify, we have not listed species. However, only two species of Boreus, B. hyemalis (L., 1767) and B. westwoodi Hagen, 1866, have been recorded from Norway. Dominant species in the subalpine zone are the same as in the low alpine zone, viz. H. pini and W. nervosus.

The Planipennia were flying from June to October, but only a few species were sampled in such »high« numbers that they gave any reliable data on flight periods. These few species are listed in Tab. 2.

In the Dovrefjell area, June belongs to spring/early summer, July—August is summer, and September—October is autumn. There was no definite spring species. Summer species are S. lutaria, H. pini, M. paganus and W. malladai. W. nervosus seems intermediate.
between summer and autumn. H. stigma is probably an autumn species.

Of the species represented with few specimens only, five were from July: C. carnea, H. lutea (early July), H. nitidulus, H. perelegans and W. mortoni. The single specimen of W. concinnus (see below) was caught in August. The Boreus specimens were found in late autumn.

DISCUSSION

In addition to the 12 species recorded in this study, two more species have been recorded from areas bordering the National Park: Raphidia ophiopsis L., 1758 was recorded by Tjeder (1937) from Dovre, Fokstaup, Oppland province, and Wesmaelius concinnus Stephens, 1836 at ST1 Oppdal, Driva (see Tab. 1). Two other species on the list, Chrysoperla carnea and Boreus sp. were only found in the vicinity of the Kongsvoll Biological Station.

The species of Neuropteroidea and Mecoptera reported here are within their previously known distribution areas in Norway. The groups are all rather poorly represented in the Scandinavian high mountains and none are confined to mountainous areas. All species have a wide distribution outside Norway.

Two species, H. lutea and H. stigma, have a wide European distribution. H. nitidulus, M. paganus, W. malladai, W. mortoni and W. nervosus have a distribution which cover most parts of Europe (excluded the Mediterranean areas) and parts of Asia. W. nervosus is also the only species of Planipennia found on Iceland and Greenland. S. lutaria, H. pini and H. perelegans are all widely distributed in Europe, but have not yet been reported from Asia. According to Vshivkova (1985), earlier reports which state S. lutaria to have a wide distribution must be considered doubtful. C. carnea is today found nearly all over the world, brought by man to many places (Aspöck et al. 1980). Both Boreus species found in Norway have a wide European distribution. One species, W. mortoni, must be considered rare, both in this area and elsewhere (Greve 1984). Contrary to this, W. nervosus ranks among the most common Planipennia in North-Western Europe.

The biology of the adults of the species listed here is well known, while knowledge of the larval stages might be restricted. Many Planipennia, which all are predators, are found associated with certain plant groups, this is probably because their prey live on these plants. Some species are always found near coniferous trees, H. pini and H. stigma, while others, like M. paganus, are mostly found on deciduous trees and herbage. W. nervosus has been recorded from many different plants.

Meinander (1972) found several species of Planipennia believed to live exclusively on coniferous trees far outside the areas of coniferous trees in the northern part of Europe, and Juniper communis, growing like a low bush, may be a suitable habitat for species elsewhere found only on coniferous trees. While wind-drift may account for some specimens in mountainous areas (Greve 1969), the many specimens of H. pini cannot be explained by wind-drift, but only as specimens from a local population probably living on Juniperus communis.

Only two species, H. pini and W. nervosus, are common in the material. Most species must indeed be considered rare at Dovrefjell, because single specimens in one or at most two localities were found (see Tab. 1). The genus Boreus is underrepresented, because adults are winter active insects living in moss mostly under the snow cover during the winter, and they were thus not present during the collecting period June-October. The few specimens caught in the area were caught by hand in late October.

The flight periods for four species which were collected more than once or twice during the survey are shown in Tab. 2. W. nervosus have in Norwegian lowlands (Andersen & Greve 1975) been caught between June and November. The species is believed to be bivoltine on the northern British Isles (Killington 1936). At the Dovrefjell National Park W. nervosus seems to have a flight period restricted to July and first part of August, and is probably univoltine in this area. Based on information collected from museum material, H. pini in the Norwegian lowlands fly from early May until early October, though very few specimens have been caught after the middle of August. At Dovrefjell the bulk of the material were collected in July. W. malladai is represented with specimens caught as early as middle of June and until first week of August. W. malladai in western Norway fly as late as October with a start in June. H. stigma is the only species with a autumn flight period at Dovrefjell. In the Norwegian lowlands, the first specimens fly
in middle of April and adults are also found in late autumn, and hibernates as imago. *H. stigma* may be bivoltine in the lowlands and univoltine at Dovrefjell. Similar conditions for other species are found in middle Europe (Gepp 1975). The specimens of the only megalopteran caught, *S. lutaria*, was from 25 June to 9 July. *S. lutaria* is the only species of *Sialis* common in southern and central Norway. *S. lutaria* was also caught in similar biotops at Hardangervidda (Greve 1976), between 4 July and 1 August. The highest locality at Hardangervidda was at Normannslågen at 1243 m a.s.l. and thus in the lower alpine zone. The flight period is delayed in mountainous areas compared with lowland populations (Andersen & Greve 1975, Kaiser 1950), a phenomenon well known from other insect groups.

The populations of all species seem to be smaller than in the lowlands, though for some like *W. mortoni*, this conclusion cannot be drawn. The flight period of some species is definitely more restricted in the mountains than in the lowlands. As predators, they certainly take their toll among Aphididae and mites, well known food animals for the larvae, but since their size is rather small, they probably are not important as food for other invertebrates, fish (*Sialis lutaria* larvae only), birds or mammals.

ACKNOWLEDGEMENTS

Supports to the field work of this paper has been given by The Norwegian Research Council for Science and the Humanities, grant nos. D.65.73-10 and D. 65.73-032, given to J.O. Solem.

REFERENCES

Received 1 Nov. 1986.
Distribution and seasonal abundance of adult Limoniidae (Insecta, Diptera, Nematocera) in the Dovrefjell National Park, South Norway*

HANS MENDL, JOHN O. SOLEM AND SIMEN BRETTEN

In the mountains of Dovrefjell National Park, South Norway, we collected 45 spp. of fam. Limoniidae in Malaise traps in the years 1980 to 1983. Dicranomyia incisurata Lackschewitz is reported new to the Scandinavian fauna, and Dicranota (Paradicrano­not) robusta Lundstrom, Ula mollissima Haliday and Symplecta scotica Edwards new to the Norwegian fauna. The collecting covered the subalpine, low and middle alpine zones. The dominant species Phyllostobis macroura Siebke, made up 51.4% of the individuals in the subalpine zone, and 72.6% in the low alpine zone (1080—1400 m a.s.l.).

From zoogeographic aspects, the species list from Dovrefjell is compared with species lists from four other Scandinavian areas. Of the 45 species collected at Dovrefjell, 29 were in common with species from Varanger, North Norway, 24 with Ångerå, Sweden, 33 with Messaure, Sweden, and 37 with Torneträsk, Sweden. The montane areas Torneträsk and Dovrefjell, showed greatest similarity in species composition. Data on phenology and notes on 10 species are given.

INTRODUCTION

During the years 1978 to 1984 the insect fauna of the Dovrefjell National Park was intensively studied. This paper deals with the species distribution, abundance, flight periods and zoogeographic views of the Limoniidae. The limoniids are poorly known in Norway. Mendl & Solem (1972) mentioned only very few papers dealing with the Limoniidae in Norway. The same conclusion can be drawn today too. Since 1972, only one additional paper has reported on Norwegian Limoniidae (Mendl 1984).

STUDY AREA AND METHODS

This study was conducted in the Dovrefjell National Park, South Norway, where the Kongsvoll Biological Station is located (62°17'N, 09°59'E, see Fig. 1). The River Driva is the main water course into which all the smaller streams empty.

Two large geological regions in the southern Scandinavian Caledonian meet in the sampling area, and the border roughly follows the River Driva. On the eastern side is the Trondheim region, which contains mainly medium-grade mica schists and greenstones of the cambro-silurian age. The western side is mainly basal gneiss region build up of high-grade gneisses and schists of precambrian age. The differences in the geology are most conspicuous when plants are considered. The eastern side has a much higher diversity of plant species than the western one. The sampling sites Stropla, Kallvella and Gluptjern (Tab. 1) are on the western side, and the remaining on the eastern. The streams and lakes in the Stropla area have pH in the range 6.0 to 6.5, and the lake Kallvellsjöen is about pH 6.8. The River Driva and the streams and lakes on the eastern side have pH in the range 7.3 to 7.9 (Bretten unpubl. data).
Fig. 1. Map of the area sampled in the Dovrefjell National Park, showing also the sites of the Malaise traps.

The climate of the area is mainly continental, with a yearly precipitation of 473 mm at Kongsvoll. The yearly mean temperature at Hjerkinna (955 m a.s.l., and 10 km south of Kongsvoll) is —0.1°C, and only 19 days a year have daily mean temperatures above 10°C (Nordhagen 1943).

Following the definitions of the biotic zones after Sjörs (1967) and Rönning (1972), the sampling sites were located in three zones: the subalpine below ca. 1080 m a.s.l., the low alpine between 1080 and 1400 m a.s.l., and the middle alpine above 1400 m a.s.l. Only one site was sampled in the middle alpine zone, while 7 and 6 sites were sampled in the low and the subalpine zones, respectively. The main objective of the study was to obtain information about the aquatic insect fauna, and therefore, all sampling were done over or close to water courses. Malaise traps (Fig. 2) were set across streams, on the banks of streams, and at small and large standing water bodies. The traps were emptied once a week, and the first preservation liquid was 2—4% formalin, the definitive one 70% Ethanol. The collections are deposited at the University of Trondheim, The Museum.

SPECIES LIST

Forty-five species of Limoniidae, which refers to the following subfamilies: Pediciinae 10 spp., Hexatominae 7 spp., Eriopterinae 14 spp. and Limoniinae 14 spp., were recorded:
Fig. 3. Map of North-Western Europe. The letters show geographical areas in Norway and Sweden, where species lists have been used in comparison. D - Dovrefjell, Å - Ångärd, M - Mæsaure, T - Torneträsk and V - Varanger.

PEDICIINAE

Tribus Ulini

Ula mollissima Haliday, 1833
Ula sylvatica (Meigen, 1818)

Tribus Pediiciini

Tricyphona immaculata (Meigen, 1804)
Tricyphona schummeli Edwards, 1921
Dicranota (s. str.) _bimaculata_ (Schummel, 1829)
Dicranota (s. str.) _guerini_ Zetterstedt, 1838
Dicranota (Paradicranota) _gracilipes_ Wahlgren, 1905
Dicranota (Paradicranota) _pavida_ (Haliday, 1833)
Dicranota (Paradicranota) _robusta_ Lundström, 1912
Dicranota (Rhaphidolabis) _exclusa_ Walker, 1848

HEXATOMINAE

Tribus Limophilini

Eloephila trimaculata (Zetterstedt, 1838)
Idioptera (s. str.) _fasciata_ (Linnaeus, 1767)

Idioptera (s. str.) _macropteryx_ Tjeder, 1955
Idioptera (Phylidorea) _squalens_ (Zetterstedt, 1838)
Euphyllidorea phaeostigma (Schummel, 1829)
Neolimnomyia (Brachylinnophila) _nemoralis_ (Meigen, 1818)

Tribus Elephantomyini

Phylloclis macoroura Siebke, 1863

ERIOPTERINAE

Tribus Cladurini

Crypteria limnophiloides Bergroth, 1913
Chionea araneoides Dalman, 1816

Tribus Eriopterini

Symphleca (s. str.) _hybrida_ (Meigen, 1804)
Symphleca (s. str.) _scotica_ Edwards, 1938

Tribus Molophilini

Eriocnopa diuturna (Walker, 1848)
Eriocnopa trivialis (Meigen, 1818)
Cheilotrichia (Empeda) _cineraescens_ (Meigen, 1804)
Ormosia (s. str.) _fascipennis_ (Zetterstedt, 1838)
Ormosia (s. str.) _pseudosimilis_ Lundström, 1912
Ormosia (s. str.) _ruficauda_ (Zetterstedt, 1838)
Ormosia (s. str.) _staegeriana_ Alexander, 1953
Rhypholophus haemorrhoidalis (Zetterstedt, 1838)
Molophilus flavus Goetghebuer, 1920

Tribus Gonomyini

Rhabdomastix (Sacandaga) _parva_ (Siebke, 1873)

LIMONIINAE

Tribus Antochini

Orimarga attenuata (Walker, 1848)

Tribus Limoniini

Rhipidia duplicata (Doane, 1900)
Dicranomyia (s. str.) _didyma_ (Meigen, 1804)
Dicranomyia (s. str.) _hyalinata_ (Zetterstedt, 1850)
Dicranomyia (s. str.) _incisurata_ Lackschewitz, 1928
Table 1. Number of individuals of various species of Limoniinae collected in Malaise traps in the years 1980, -81, -82, and -83 at streams in the Dovrefjell National Park. Raubekken and Blesbekken were sampled during 1980 and -81, and the 1981 data are given in brackets.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicranomyia incisurata</td>
<td>1452</td>
<td>1350</td>
<td>1200</td>
<td>1150</td>
<td>1150</td>
<td>1220</td>
<td>1209</td>
<td>1289</td>
<td>1000</td>
<td>900</td>
</tr>
<tr>
<td>Dicranola guerini</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Phyllolabis macroura</td>
<td>1</td>
<td>12</td>
<td>46</td>
<td>263</td>
<td>99</td>
<td>42</td>
<td>342</td>
<td>132</td>
<td>113</td>
<td>(13)</td>
</tr>
<tr>
<td>Limonia macrostigma</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Elophila irmaculata</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricyphona immaculata</td>
<td>4</td>
<td>1</td>
<td>(11)</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>(9)</td>
<td>1</td>
</tr>
<tr>
<td>Dicranomyia maculata</td>
<td>2</td>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanolinia caledonica</td>
<td>1</td>
<td>1</td>
<td>(2)</td>
<td>(3)</td>
<td>2</td>
<td>(1)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhiphidolabidus exclauda</td>
<td>2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranomyia mediola</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormisa fascipennis</td>
<td>1</td>
<td></td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symplecta scoticca</td>
<td>3</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopiera macropteryx</td>
<td>1</td>
<td>1</td>
<td>(3)</td>
<td>16</td>
<td>9</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>(2)</td>
</tr>
<tr>
<td>Rhyophorus haemorrhoidalis</td>
<td>7</td>
<td></td>
<td>5</td>
<td>(2)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormosia staegeriana</td>
<td>2</td>
<td>(10)</td>
<td>1</td>
<td>1</td>
<td>(1)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oribatrus ateriusa</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonia sylvicola</td>
<td>6</td>
<td>1</td>
<td>(3)</td>
<td>1</td>
<td>1</td>
<td>(2)</td>
<td>19</td>
<td>(11)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Dicranomyia hyalinata</td>
<td>4</td>
<td>2</td>
<td>(2)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>(1)</td>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>Dicranomyia didyma</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>(2)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symplecta hybrida</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranomyia autumnalis</td>
<td>1</td>
<td>2</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ula molissima</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachyliphophila nemoralis</td>
<td>4</td>
<td>(1)</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>22</td>
<td>(6)</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Molophilus flavus</td>
<td>5</td>
<td>(12)</td>
<td>14</td>
<td>(11)</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerophaga sigmatica</td>
<td>13</td>
<td>(8)</td>
<td>7</td>
<td>9</td>
<td>(3)</td>
<td>14</td>
<td>(1)</td>
<td>14</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Phyllidora squamens</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricyphona schumelli</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacandaga parva</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriocenia disiurina</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanolinia rufiventris</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormosia pseudomissilis</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranca bimaculata</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphyllidora phaeostigma</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empeda cinerascens</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradicranola gracilipes</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ula sylvatica</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhipidia duplicata</td>
<td>1</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idiopera fasciata</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crepidera limnophileoides</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalimnobia eetersiadi</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormosia ruficauda</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranomyia terranovae</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chionea araneoides</td>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradicranola robusta</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradicranola pavida</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Distribution of Limoniidae species at different altitudes.

<table>
<thead>
<tr>
<th></th>
<th>Middle</th>
<th>Low</th>
<th>Sub-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1400m</td>
<td>1080m</td>
<td>1080m</td>
</tr>
<tr>
<td></td>
<td>1400-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><1080m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Dicranomyia incisurata X? X X
- Dicranota querini X X X
- Phyllobasis macroura X? X X
- Limonia macrostigma X
- Eloeophila trimaculata X
- Tricyphona immaculata X X
- Eriocnopia trivialis X
- Melanolimonia caledonica X
- Rhipidolabis exilis X
- Dicranomyia modesta X
- Ormosia fascipennis X
- Symplecta scotica X
- Idioptera macropteryx X
- Thypholophus haemorrhoidalis X
- Ormosia staegeriana X
- Orimarga attenuata X
- Limonia sylvicola X
- Dicranomyia hyalinata X
- Dicranomyia diidyma X
- Symplecta hybrida X
- Dicranomyia autumnalis X
- Ula mollissima X
- Brachylimnophila nemoralis X
- Molophilus flavus X
- Sphaeropyga stigma X
- Phylidorea squales X
- Tricyphona schummeli X
- Sacandaga parva X
- Erioconopa diurna X
- Melanolimonia rufiventris X
- Ormosia pseudosimilis X
- Dicranota bimaculata X
- Ephylidorea phaeostigma X
- Empeda cinerascens X
- Paradicranota gracilipes X
- Ula sylvatica X
- Rhipidola duplicata X
- Idioptera fasciata X
- Crypta limnophloides X
- Melaltimobius zetterstedti X
- Ormosia ruficuda X
- Dicranomyia terraenovae X
- Chionea araneoides X
- Paradicranota robusta X
- Paradicranota pavida X

HABITATS

Of the 45 species recorded, only 9 seem to be of terrestrial origin. The remaining species live in aquatic or semiaquatic habitats. Species of terrestrial origin are: *Phyllobasis macroura, Limonia macrostigma, Dicranomyia modesta* (?), *Limonia sylvicola, Ula mollissima, U. sylvicola, Rhipidola duplicata, Metalimnobia zetterstedti*, and *Chionea araneoides*. The dominant species in the low and subalpine zones is a terrestrial species.

DISTRIBUTION AND ABUNDANCE OF SPECIES IN THE STUDY AREA

Tab. 1 shows the number of species collected at different sites during 1980 to 1983. Tab. 2 gives species collected at different altitudes, and Tab. 3 relative abundance in the low and subalpine zones.

In the middle alpine zone, three species, *Dicranota querini, Dicranomyia incisurata* and *Phyllobasis macroura* were collected. *D. querini* is certainly a true inhabitant of this biotic zone, but because only one specimen of each of *D. incisurata* and *P. macroura* was recorded, these species may have flown or blown in from lower altitudes.

In the low alpine zone, 36 species were collected. The very dominating species was *Phyllobasis macroura*, which occurred at all sites and outnumbered other species at most sites. Of 1125 specimens examined from the low alpine zone, *P. macroura* made up 72.6%, and the remaining species had each a lower percentage than 3.6, which was estimated for *Idioptera macropteryx*.

In the low alpine zone, 36 species were collected. The very dominating species was *Phyllobasis macroura*, which occurred at all sites and outnumbered other species at most sites. Of 1125 specimens examined from the low alpine zone, *P. macroura* made up 72.6%, and the remaining species had each a lower percentage than 3.6, which was estimated for *Idioptera macropteryx*.

Thirty-seven species were caught in the subalpine zone, and again *Phyllobasis macroura* was the dominant species, counting 51.4% of 1006 individuals collected here. *P. macroura* was present at all sites investigated in this zone. The second dominant species was *Dicranomyia hyalinata*, which represen-
Table 3. Relative abundance of the most common species of Limoniidae in Malaise trap collections in low and subalpine zones in Dovrefjell National Park.

<table>
<thead>
<tr>
<th></th>
<th>N = 1125 Low alpine</th>
<th>N = 1006 Subalpine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyllolabis macroura</td>
<td>72.6%</td>
<td>51.5%</td>
</tr>
<tr>
<td>Idioptera macropteryx</td>
<td>3.6%</td>
<td>7.7%</td>
</tr>
<tr>
<td>Tricyphona immaculata</td>
<td>3.3%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Eriocoona trivialis</td>
<td>1.9%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Sphaeropyga stigmatica</td>
<td>1.9%</td>
<td>Brachylinnophila nemoralis</td>
</tr>
<tr>
<td>Molophilus flavus</td>
<td>1.5%</td>
<td>Tricyphona immaculata</td>
</tr>
<tr>
<td>Dicranomyia hyalinata</td>
<td>1.4%</td>
<td>Molophilus flavus</td>
</tr>
<tr>
<td>Ormosia staegerina</td>
<td>1.2%</td>
<td>Idioptera macropteryx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhaphidolabis exclusa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dicranomyia didyma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eriiconopa diuturna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dicranomyia incisurata</td>
</tr>
</tbody>
</table>

Phyllolabis macroura constituted 7.7% of numbers, and third was Sphaeropyga stigmatica, counting for 7.0%. These two latter species occurred at 11 sites. The remaining species in the subalpine zone made up less than 4% each of the number of specimens. Of the species with low abundance, Tricyphona immaculata and Limonia sylvicola were found at 11 and 10 sites, respectively. All species recorded at 10 or more sites must be regarded as widely distributed in the area sampled. Forty species were collected at half or fewer number of sites sampled, and of these, 15 species were found at one site and 6 at two sites only (Tab. 4), and are very locally distributed or rare in the Dovrefjell National Park. Five species were recorded on the western side only, and 10 species on the eastern side only (Tab. 1).

PHENOLOGY

The flight period of the Limoniidae in the Dovrefjell mountains was June to October. Six species occurred as adults in June, 37 in July, 20 in August, 14 in September, and 10 in October (see Tab. 5). The first species to appear were Idioptera macropteryx and Symplecta hybrida. The latest species in autumn were Dicranomyia hyalinata, Sphaeropyga stigmatica, and Chionea araneoides, ten species, Melanolimonia caledonica, Idioptera macropteryx, Ula mollissima, Paradicranota robusta, P. pavida, Ula sylvatica, Symplecta hybrida, S. scotica, Sacandaga parva, and Rhipidia duplicata, fly in early summer. Late summer and autumn species are Dicranomyia didyma, D. autumnalis, D. modesta, D. terraenovae, Sphaeropyga stigmatica, Chionea araneoides, and Eriiconopa diuturna. The longest flight period had Dicranomyia hyalinata, extending from July to October, and only three more species, Sphaeropyga stigmatica, Limonia sylvicola, and Phyllolabis macroura, and flight periods longer than two months.

Table 4. Species collected at 1 or 2 sites only, and which are rare or locally abundant in the Dovrefjell National Park.

<table>
<thead>
<tr>
<th></th>
<th>1 site</th>
<th>2 sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulia mollissima</td>
<td>Dicranota bimaculata</td>
<td>Eriocoona trivialis</td>
</tr>
<tr>
<td>Dicranota bimaculata</td>
<td>Euphyllidorea phaeostigma</td>
<td>Dicranomyia modesta</td>
</tr>
<tr>
<td>Empeda cinerascens</td>
<td>Paradicranota gracilipes</td>
<td>Tricyphona schumelli</td>
</tr>
<tr>
<td>Paradicranota gracilipes</td>
<td>Ula sylvatica</td>
<td>Melanolimonia rufiventris</td>
</tr>
<tr>
<td>Ula sylvatica</td>
<td>Rhipidia duplicata</td>
<td>Ormosia pseudosimilis</td>
</tr>
<tr>
<td>Rhipidia duplicata</td>
<td>Idioptera fasciata</td>
<td>Crypteria limnophiloides</td>
</tr>
<tr>
<td>Idioptera fasciata</td>
<td>Metalimnobia zetterstedti</td>
<td>Ormosia ruficauda</td>
</tr>
<tr>
<td>Crypteria limnophiloides</td>
<td>Dicranomyia terraenovae</td>
<td>Dicranomyia robusta</td>
</tr>
<tr>
<td>Metalimnobia zetterstedti</td>
<td>Chionea araneoides</td>
<td>Paradicranota robusta</td>
</tr>
<tr>
<td>Ormosia ruficauda</td>
<td>Paradicranota cristata</td>
<td>Paradicranota pavida</td>
</tr>
</tbody>
</table>

68
Table 5. Flight periods of Limoniidae in Dovrefjell National Park during 1980-83. The months are divided in four equal parts.

<table>
<thead>
<tr>
<th></th>
<th>June 2</th>
<th>June 3</th>
<th>June 4</th>
<th>July 1</th>
<th>July 2</th>
<th>July 3</th>
<th>July 4</th>
<th>Aug 1</th>
<th>Aug 2</th>
<th>Aug 3</th>
<th>Aug 4</th>
<th>Sept 1</th>
<th>Sept 2</th>
<th>Sept 3</th>
<th>Sept 4</th>
<th>Oct 1</th>
<th>Oct 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idioptera macropertyx</td>
<td>X</td>
</tr>
<tr>
<td>Symplecta hybrida</td>
<td>X</td>
</tr>
<tr>
<td>Symplecta scotica</td>
<td>X</td>
</tr>
<tr>
<td>Dicranota guerini</td>
<td>X</td>
</tr>
<tr>
<td>Ula sylvatica</td>
<td>X</td>
</tr>
<tr>
<td>Paradicranota robusta</td>
<td>X</td>
</tr>
<tr>
<td>Idioptera fasciata</td>
<td>X</td>
</tr>
<tr>
<td>Paradicranota pavida</td>
<td>X</td>
</tr>
<tr>
<td>Melanolimonia caledonica</td>
<td>X</td>
</tr>
<tr>
<td>Elophila trimaculata</td>
<td>X</td>
</tr>
<tr>
<td>Ormosia fascipennis</td>
<td>X</td>
</tr>
<tr>
<td>Ula molisima</td>
<td>X</td>
</tr>
<tr>
<td>Saccandaga parva</td>
<td>X</td>
</tr>
<tr>
<td>Melophila flavus</td>
<td>X</td>
</tr>
<tr>
<td>Rhaphidolabis exclusa</td>
<td>X</td>
</tr>
<tr>
<td>Brachylimnophila nemoralis</td>
<td>X</td>
</tr>
<tr>
<td>Tricyphona immaculata</td>
<td>X</td>
</tr>
<tr>
<td>Dicranomyia hyalinata</td>
<td>X</td>
</tr>
<tr>
<td>Dicranomyia incisurata</td>
<td>X</td>
</tr>
<tr>
<td>Phylidorea squalens</td>
<td>X</td>
</tr>
<tr>
<td>Tricyphona schummeli</td>
<td>X</td>
</tr>
<tr>
<td>Rhipidia duplicata</td>
<td>X</td>
</tr>
<tr>
<td>Crypteria limnophiloides</td>
<td>X</td>
</tr>
<tr>
<td>Limonia macrostigma</td>
<td>X</td>
</tr>
<tr>
<td>Metalimobia zetterstedti</td>
<td>X</td>
</tr>
<tr>
<td>Ormosia staegeriana</td>
<td>X</td>
</tr>
<tr>
<td>Ormosia ruficauda</td>
<td>X</td>
</tr>
<tr>
<td>Rhypolopus haemorrhoidalis</td>
<td>X</td>
</tr>
<tr>
<td>Erioconopa trivialis</td>
<td>X</td>
</tr>
<tr>
<td>Phyllophora macroura</td>
<td>X</td>
</tr>
<tr>
<td>Orimarga attenuata</td>
<td>X</td>
</tr>
<tr>
<td>Euphyllidorea phaeostigma</td>
<td>X</td>
</tr>
<tr>
<td>Paradicranota gracilipes</td>
<td>X</td>
</tr>
<tr>
<td>Dicranota bimaculata</td>
<td>X</td>
</tr>
<tr>
<td>Melanolimonia rufiventris</td>
<td>X</td>
</tr>
<tr>
<td>Ormosia pseudosimilis</td>
<td>X</td>
</tr>
<tr>
<td>Limonia sylvicola</td>
<td>X</td>
</tr>
<tr>
<td>Empeda sineracens</td>
<td>X</td>
</tr>
<tr>
<td>Dicranomyia didyma</td>
<td>X</td>
</tr>
<tr>
<td>Dicranomyia modesta</td>
<td>X</td>
</tr>
<tr>
<td>Sphaeropyga stigmatic</td>
<td>X</td>
</tr>
<tr>
<td>Sphaeropyga autumnalis</td>
<td>X</td>
</tr>
<tr>
<td>Dicranomyia terraenovae</td>
<td>X</td>
</tr>
<tr>
<td>Eriocnopa diuturna</td>
<td>X</td>
</tr>
<tr>
<td>Chionea araneoides</td>
<td>X</td>
</tr>
</tbody>
</table>

NUMBER OF SPECIES COLLECTED PER MONTH

A comparison of the number of species collected per month between Dovrefjell N. P. and three Swedish areas (Tornetrask, a mountain area, 68°21'N, 18°49'E; Messaur, a woodland area, 66°42'N, 20°25'E; and Angeran, a coastland area, 63°55'N, 19°50'E) show some interesting features (Tab. 6, Fig. 4). In general there are great similarities between the Swedish localities, while the Dov-
Table 6. Number of species collected each month, and their percentage each month of the total number of species. Data given for Dovrefjell, Norway, and Tornetrask, Messaure and Ageran, Sweden. (Data from Varanger, North Norway, could not be used because the sampling was not continuous over the warm season).

<table>
<thead>
<tr>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dovrefjell/mountain area</td>
<td>-</td>
<td>6</td>
<td>37</td>
<td>20</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>62°17'N, 09°59'E; n = 45</td>
<td></td>
<td></td>
<td>13.4%</td>
<td>82.2%</td>
<td>44.5%</td>
<td>31.1%</td>
</tr>
<tr>
<td>Tornetrask/mountain area</td>
<td>-</td>
<td>9</td>
<td>52</td>
<td>56</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>68°21'N, 18°49'E; n = 73</td>
<td></td>
<td></td>
<td>12.3%</td>
<td>71.2%</td>
<td>76.7%</td>
<td>26.0%</td>
</tr>
<tr>
<td>Messaure/woodland area</td>
<td>2</td>
<td>35</td>
<td>56</td>
<td>60</td>
<td>39</td>
<td>12</td>
</tr>
<tr>
<td>66°42'N, 20°25'E; n = 93</td>
<td></td>
<td></td>
<td>2.2%</td>
<td>37.6%</td>
<td>60.2%</td>
<td>64.5%</td>
</tr>
<tr>
<td>Ageran/coastal area</td>
<td>-</td>
<td>15</td>
<td>39</td>
<td>41</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>63°35'N, 19°50'E; n = 62</td>
<td></td>
<td></td>
<td>24.1%</td>
<td>62.9%</td>
<td>66.1%</td>
<td>43.5%</td>
</tr>
</tbody>
</table>

refjell mountains differ in several features. Firstly, the peak in number of species is much more pronounced at Dovrefjell, and secondly, a higher percentage of species are present in autumn at Dovrefjell than in the Swedish localities. The Dovrefjell and Tornetrask collections both have a low number of species in June, which certainly is caused by the late snowmelting in the mountains. While a definite peak in the number of species appeared in July at Dovrefjell, nearly equal numbers were found in July and August, with the very peak in August, at the Swedish localities. The low number of species found at Tornetrask in October compared to what was the case at Dovrefjell, may be related to the difference in daylength at that time between Tornetrask and Dovrefjell (look at the difference in latitude). The percentages given in Tab. 6 show a surprising similarity between Messaure and Ageran localities. The differences between these two and Tornetrask and Dovrefjell, may be related to differences in altitudes between the localities. Dovrefjell and Tornetrask are mountain areas, while Messaure and Ageran are lowland areas.

ZOOGEOGRAPHY

Dovrefjell N. P. has a very interesting Limoniidae fauna. We have listed 45 species from the area. Among these, Dicranomyia (s. str.) incisurata is new for Scandinavia and North Europe. Three species, Dicranota (Paradicranota) robusta, Ula mollissima and Symplecta scotica are new to the Norwegian fauna. When comparing the list of species from Dovrefjell with other Scandinavian areas, we have 29 spp. in common with Varanger, North Norway (where 51 spp. were found); 37 spp. with the Tornetrask mountains (73 spp); 33 spp. with the forest area in Messaure (93 spp); and 24 spp. with the coastal area at Ageran (62 spp.). Phyllolabris macroura and Dicranomyia incisurata are typical for montane or northern latitude areas. Idioptera macropteryx, Symplecta scotica, Sacandaga parva, Dicranomyia hyalinata and D. terraenovae, have a northern distribution. The remaining species are more or less widely distributed in the western part of Palaearctic. Sixteen of the species are distributed to the eastern part of Asia, and three, Ormosia fascipennis, Rhipidia duplicata and Dicranomyia terraenovae also belong to the North American fauna (Tab. 7).

NOTES ON SPECIES

Of the species collected at Dovrefjell, the following must be commented on specifically.

Dicranota (Paradicranota) robusta Lundström, 1912

Distribution: North and Middle Europe, Little Asia. Described from Finnish material, and later reported two times from Sweden (Småland and Messaure). Reported also from Denmark; Great Britain; Allgäu, Germany; Austria and Jugoslavia. This is the first report from Norway.
Table 7. Distribution of the Dovrefjell Limoniidae species in the Palearctic area. x = present, - = not present, 1 = also in North America.

<table>
<thead>
<tr>
<th>Species collected at Dovrefjell</th>
<th>Varanger (51)</th>
<th>Abisko (73)</th>
<th>Mesauere (93)</th>
<th>Ångerān (62)</th>
<th>Northern species</th>
<th>East Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ula mollissima</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ula sylvatica</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Tricyphona immaculata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricyphona schummel</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranota bimaculata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranota guerini</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradicranota gracilipes</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradicranota pavia</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paradicranota robusta</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhphidolabis exclusa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Eloeophila trimaculata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idioptera fasciata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idioptera macropteryx</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Phyllidorea squalens</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Euphylidorea phaeostigma</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachylinnophila nemoralis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllolabis macourea</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypteria limnophiloides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chionea araneoides</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symplecta hybrida</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Symplecta scotica</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erioconopa diururna</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erioconopa trivialis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empedia sинаracens</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormosia fascipennis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormosia pseudosimilis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormosia ruficauda</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ormosia staegeriana</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhypholophus</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>haemorrhoidalis</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molophilus flavus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacandaga parva</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Orimarga attenuata</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhipidia duplicata</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Dicranomyia didyma</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicranomyia hyalinata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x x</td>
</tr>
<tr>
<td>Dicranomyia incisurata</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x x</td>
</tr>
<tr>
<td>Dicranomyia modesta</td>
<td>x</td>
<td>x</td>
<td>x x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Dicranomyia tetraenovae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Melanolimonia caledonica</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanolimonia rufiventris</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeropyla autumnalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeropyla stigmaica</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalimmobia zetterstedt</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonia macrostigma</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonia sylvicola</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ula mollissima Haliday, 1833 (= Ula crassicauda Agrell, 1945, syn.)
Distribution: Great Britain, Sweden, CSSR, Germany, Austria, Switzerland. New to Norway.

Idioptera macropteryx Tjeder, 1955
Distribution: North and Mid-Scandinavia, East Asia. Fairly common in the Varanger area, but there is no report on this species from Finland, but surely it must occur also
Phyllolabis macroura Siebke, 1863
Distribution: Scandinavia and the Alps. A boreo-alpine species, and its great abundance at Dovrefjell is somewhat surprising.

Symplecta scotica Edwards, 1938
Distribution: Great Britain, North Sweden (Messaure and Abisko), North Finland (Sitonen leg.). S. scotica is very close to S. hybrida, but they are distinguished by the wing venation characters given by Edwards. S. scotica is new to Norway.

Rhabdomastix (Scandage) parva Siebke, 1873
Distribution: This species was described from material collected at Dovrefjell: Dovre (Fokstuen and Drivdalen / type specimens!), North Sweden (Abisko and Messaure), Iceland. We have two more records from Norway; TRI, site at the road in northern Perskogen, 1 female, 10 July 1984; HEN, at a swampy area near the road about 15 km north-west of Tynset, 31 females, 2 July 1985, Mendl leg. It is interesting to notice that only females of this species have been collected. A reliable question is; are we here dealing with a parthenogenetic species?

Dicranomyia (s. str.) hyalinata Zetterstedt, 1850
Distribution: North Europe, North Asia to East Asia.

Dicranomyia (s. str.) incisurata Lackscheiwitz, 1928

Dicranomyia (s. str.) terraenovae Alexander, 1920
Distribution: North-Eurasia. North America. This species was earlier reported as scarce in Scandinavia, as here at Dovrefjell also. However, D. terraenovae obviously find optimal habitats in forests, and is strongly attracted to light. In the collections from Messaure, Sweden, D. terraenovae appeared in great abundances in light trap collections, and also in traps that were located quite a distance from wet areas.

Dicranomyia (Sphaeropyga) stigmatica Meigen, 1830
Distribution: Europe. D. stigmatica is very close to D. nigristigma Nielsen, 1919, and was described from Denmark. However, we are sure that our species is D. stigmatica, because one of us (H. Mendl) has seen nearly all material from Scandinavia.

ACKNOWLEDGEMENTS
Supports to the field work of this paper has been given by The Norwegian Research Council for Science and the Humanities, grant nos D.65.73-10 and D.65.73-032, given to J.O. Solem.

REFERENCES

Received 1 Nov. 1986.
Collembola from the Dovrefjell National Park, South Norway*

ARNE FJELLBERG

A list of 71 species, mainly from the Kongsvold area, is presented. A further 25—30 species are expected by future studies. An early species list from Kongsvold, published by Linnaniemi (1911), is commented. His record of *Tetracanthella pilosa* Schött is considered dubious. The higher mountains in the park have a distinct element of rare, northern species.

Arne Fjellberg, Tromsø Museum, N-9000 Tromsø, Norway.

INTRODUCTION

The information on alpine Collembola in south Norway is found in Linnaniemi (1911) and Fjellberg (1975, 1976, 1980). The present paper is based on Linnaniemi (op. cit.), Fjellberg (1976) and additional material collected by the author around Kongsvold in 1979. A few records from outside the formal borders of the national park are included (location in parenthesis following the species name). Species which were recorded by Linnaniemi but not recollected by the present author, are marked with an asterisk in the species list.

SPECIES LIST

COMMENTS

Some of the taxa mentioned by Linnaniemi (1911) are collective names: *Hypogastrura armata* (Nicolet) is probably *Ceratophysella*
den ticulata, Onychiurus armatus (Tullberg) is probably O. pseudovanderdrifti, Tullbergia krausbaueri (Börner) could be a number of species, but hardly krausbaueri s. Rusek, Tetracanthella pilosa Schött is probably T. britannica. The true pilosa is only found twice in Norway (Troms, Fjellberg unpubl.). In addition Linnaniemi's record of Bourletiella pruinosa should be verified. The species might have been confused with both pistillum Gisin and hortensis (Fitch) which probably both occur in the area, although they were not present in the material at hand.

The above list counts 71 species. Further collections in the area will probably uncover some 25—30 additional species which are likely to be present in the area (Fjellberg 1980).

Most of the species on record are common and have a wide distribution in Norway. The more rare species are found in the alpine habitats: Willemia intermedia, Anurida alpina, Tullbergia arctica, Pseudanurophorus inoculatus, Proisotoma subarctica, Vertagopus sa-

REFERENCES

Bibionidae, Xylophagidae, Rhagionidae, Psilidae, Micropezidae, Clusiidae and Piophilidae (Diptera) from the Dovrefjell National Park, South Norway*

LITA GREVE, JOHN O. SOLEM AND SIMEN BRETten

Diptera belonging to the families Bibionidae, Xylophagidae, Rhagionidae, Micropezidae, and Clusiidae, together with some selected genera of Piophilidae and Psilidae, from the middle, low and sub-alpine zones ranging 1452 m to 900 m a.s.l., were investigated. Species of Bibionidae, Xylophagidae, Clusiidae and Piophilidae are only referred to, because they have been treated in previous papers.

Three species of Rhagionidae were collected in Dovrefjell National Park: Rhagio scolopacea (L.), Symphoromyia crassicornis (Panzer) and Chrysopilus luteolus (Fallén). R. scolopacea and S. crassicornis are both common in the area, while C. luteolus occur rarely in the sub-alpine zone. Flight periods for the common species are figured. The flight period for S. crassicornis is about the same in the Dovrefjell mountains and the lowland of Norway. R. scolopacea flies later in the season in the mountains than in the lowlands of Norway.

Simen Bretten, Kongsvoll Biological Station, N-7340 Oppdal, Norway.

INTRODUCTION

The present paper deals with Diptera belonging to several different families collected in the surroundings of Kongsvoll in the Dovrefjell mountains. The two families Psilidae and Piophilidae are represented with selected genera only. For the remaining five families, all material sorted out have been treated.

The area sampled is entirely within the Dovrefjell National Park and the adjacent protected area. Our national parks are areas with a high degree of protection, and the insect fauna is of great interest because scientific documentation of the fauna will increase the value of the parks as reference areas.

The methods used for collecting were chosen to give a good survey of the aquatic insects, and the traps were therefore placed near running or still water. For those Diptera whose larvae live in other habitats than water, wet or marshy areas, collecting at other sites would probably give more comprehensive data on flies in the Dovrefjell National Park.

STUDY AREA AND METHODS

The study area was the surroundings of Kongsvoll Biological Station (62°17'N, 09°59'E) between the elevations 900 and 1452 m (Fig. 1). Two large geological regions in the southern Scandinavian Caledonian meet in the sampling area, and the border roughly follows the River Driva. On the eastern side is the Trondheim region, which contains mainly medium-grade schists and greenstones of the cambro-silurian age. The western side is mainly a basal gneiss region built up of high-grade gneisses and schists of Precambrian age. The differences in the geology between the eastern and the western side of the valley are most conspicuous when plant species are considered. The eastern side has a much higher diversity of plant species than the western one. The sampling sites Stropla,
Fig. 1. Map of the area sampled.

Kallvella and Gluptjern are on the western side, and the remaining ones on the eastern side. The streams and lakes in the Stroplsjø area have a pH in the range 6.0—6.5, and the lake Kallvellsjøen is about pH 6.8. The River Driva, the lakes and the streams on the eastern side have pH in the range 7.3—7.9 (Bretten unpubl. data).

The climate of the area is mainly continental, with a yearly precipitation of 473 mm at Kongsvoll. The yearly mean temperature at Hjerkin (955 m a.s.l.) 10 km south of Kongsvoll, is —0.1°C, and only 19 days a year have daily mean temperatures above 10°C (Nordhagen 1943).

Malaise traps samples from 11 sites along streams, at pools and lakes, have been used for this presentation. According to the definition of biotic zones in mountainous areas (Sjörs 1967, Rønning 1972), one of the sampling sites was in the middle alpine zone, six in the low alpine zone, and four in the sub-alpine zone. The middle alpine has patches of plant cover, while a continuous plant cover is present in the low alpine zone. The sub-alpine is characterized by a birch belt. Sampling was carried out during the years 1980—1983, and covered the months June to October.

RESULTS
Fam. Bibionidae

The following species were listed from the Dovrefjell mountains in Greve et al. (1984a): *Bibio clavipes* Meigen, 1818, *B. fulvipes* Zetterstedt, 1838, *B. rufipes* Zetterstedt, 1850, *B. pomonae* (Fabricius, 1885) and *Dilophus femoratus* Meigen, 1804. A sixth species can be added to the list: *Bibio nigriventris* Holiday, 1833. One female was collected at Raubekken on 17 July 1980. This was one of the unidentified specimens listed in Greve et al. (1984a). Additional material of *B. nigriventris*, 1 ♀ 5 ♀♀, were collected near Kongsvoll Biological Station 30 June 1981 (Zool. Mus., 76
Univ. Bergen). *B. nigriventris* is widely distributed in Norwegian lowlands (Greve 1987), and the site at Raubekken represents the highest elevation of any sampling of *B. nigriventris* in Norway.

According to Malaise trap samples, *B. fulvipes*, *B. rufipes*, *B. pomonae* and *D. femoratus* seem fairly evenly distributed in the sub-alpine zone. In the alpine zone, *B. fulvipes* may be locally abundant and outnumber the remaining Bibionidae species. Readers who want to know more details, are referred to Greve et al. (1984a).

Fam. Xylophagidae

One species, *Xylophagus compeditus* Wiedemann, 1851, was found in the area (Greve et al. 1984b). In addition to localities listed in Greve et al. (1984b), *X. compeditus* has also been found in TRI Kvænenangen, Kvænangen (Ent. coll., Univ. Lund, Sweden), and in FØ Porsanger, Kistrand (Zool. Mus., Univ. Oslo), and is thus recorded from all over Norway. *X. compeditus* does not seem to be an abundant species in the Dovrefjell National Park. For more details, see Greve et al. (1984b).

Fam. Rhagionidae

Three species were found: *Chrysopilus luteolus* (Fallén, 1814) (6 inds), *Rhagio scolopacea* (L., 1758) (12 inds) and *Symphoromyia crassicornis* (Panzer, 1809) (20 inds). Numbers in brackets represent total number of specimens.

1. *Chrysopilus luteolus* was not collected in the survey done by Solem (1985), but 2♂3♀ were netted by Tore R. Nielsen on 8 July 1966, at 800 m a.s.l. near the Biological Station at Kongsvoll, and 1♀ at Gåvål on 20 July at 1960 m a.s.l. Both localities are in the sub-alpine zone.

C. luteolus has been found scattered in Norway north to northern part of Nordland province (Greve 1984), but was not collected in the survey of the International Biological Program at Hardangervidda (Greve 1980). The locality at Gåvål at 960 m a.s.l. represents the highest elevation known in Norway.

2. *Rhagio scolopacea* was collected from two localities at Dovrefjell, Gåvål and Raubekken, both in the sub-alpine zone. There are material collected near the Biological Station at Kongsvoll in both Zool. Mus., Univ. Oslo and Zool. Mus., Univ. Tromsø.

R. scolopacea is distributed all over Norway, and must be considered as very common. *R. scolopacea* was collected up to between 1100 and 1200 m a.s.l., viz. the lower alpine zone on Hardangervidda (Greve 1980). In the lowlands of Norway, the flight period commence in late May, and terminates in late July (Greve 1984). The flight period at Kongsvoll was found to be late June and July (Fig. 1).

3. *Symphoromyia crassicornis* was collected at Blesbekken 1980 and 1981 at 1000 m a.s.l., Raubekken at 900 m a.s.l., Gåvat and Gåvålbecken at 930 m a.s.l. In addition, there are specimens in Zool. Mus., Univ. Bergen, collected near the Kongsvoll Biological Station and Grånbakken at 940 m a.s.l. *S. crassicornis* is a common fly in mountain areas in Norway, but rather rare in the lowlands (Greve 1984). *S. crassicornis* was collected up to 1250 m a.s.l. at Hardangervidda (Greve 1980). The flight period in the lowland commence in middle of July, most records are from July and a few from the first part of August. The flight period in the Kongsvoll area is late June to early August (Tab. 1).

Table 1. Flight period of *Rhagio scolopacea* (L.) and *Symphoromyia crassicornis* (Panzer) in the Kongsvoll area. Numbers give monthly decades.

<table>
<thead>
<tr>
<th>Species</th>
<th>June 1</th>
<th>June 2</th>
<th>June 3</th>
<th>July 1</th>
<th>July 2</th>
<th>July 3</th>
<th>August 1</th>
<th>August 2</th>
<th>August 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhagio scolopacea</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphoromyia crassicornis</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Fam. Psilidae
Material of Psilidae was not sorted out of the Malaise trap samples. However, a recent check of this family in the collections of Zool. Mus., Univ. Bergen, revealed one species probably new to the fauna of Norway. This record was from the Dovrefjell National Park: STI Oppdal, Kongsvoll, 1 ♀, 890 m a.s.l., 8 July 1966, *Psila (Psila) merdaria* Collin, 1944. Some of the specimens in Bergen had been determined as the closely related *P. fimetaria* (L., 1761). *P. fimetaria* was outnumbered by *P. merdaria* in the collection checked (2:12), and this could indicate that *P. merdaria* is the more common species. Lyneborg (1963) reports this trend in the Danish material. The distribution of *P. merdaria* (based on material in Bergen only) is: VE, HOY, HOI, SFI and TRY, viz. all over the country.

Fam. Micropezidae
One species, *Calobata petronella* (L., 1758), was collected from Blesbekken, 1000 m a.s.l., and Raubekken, 900 m a.s.l. One female only from each locality. Material of *C. petronella* in Norwegian collections has been checked and only one locality at Haugastøl, Buskerud province, represents a sub-alpine habitat at 990 m a.s.l. *C. petronella* is a common fly species in the lowlands all over Norway.

Fam. Clusiidae
One species, *Clusiodes apicalis* (Zetterstedt, 1841), was recorded from Blesbekken (8 inds). The family Clusiidae was treated by Greve & Midtgaard (1986), and the material from Blesbekken included. *C. apicalis* is found widely scattered in Norway.

Fam. Piophilidae
One species, *Piophila (Amphipogon) flavia* (Zetterstedt, 1838), was sorted out from the material where it occurred in surprising numbers at some localities, see also Greve & Solem (1983). *P. flavia* has been found scattered in Norway. For more details, see Greve & Solem (1983).

DISCUSSION
The present investigation and earlier surveys in mountainous areas in Norway (Greve 1980), show that the Rhagionidae, represented with three species, is well established in alpine habitats. Sweep-netting is a good method for collecting these flies, and a higher number of specimens were collected in the IBP survey at Hardangervidda, where such nets were much used. *C. luteolus* was not collected in Malaise traps, but solely by sweep-netting. Judged from material in Norwegian collections, *C. luteolus* will probably not be found above the sub-alpine zone.

R. scolopacea and *S. crassicornis* seem to have stable populations in alpine habitats. *S. crassicornis* is common in the Kongsvoll area, as it was at Hardangervidda also (Greve 1980). The species is fairly rare in the lowlands. This trend was first noted in Scandinavian material by Ringdahl (1951). The flight period of *R. scolopacea* commences and terminates later in the season in the Kongsvoll area than in the lowlands. Such differences between mountain and lowland populations are commonly found in insects. This is not found for *S. crassicornis*, where the flight period in the lowlands is approximately the same as in the Kongsvoll area.

The rhagionid genus *Ptiolina* was not found in the material. Some *Ptiolina* species confined to alpine habitats are rare, but have been recorded from a few areas in Norway. One record is from northern Oppland province, Dovre community, Svanå, at about 1200 m a.s.l., viz. an area bordering to the Dovrefjell National Park. It is reason to believe that *Ptiolina* is also present in the Dovrefjell National Park, but that this genus prefers other habitats than sampled in this survey. The genus is at present under revision, and it is still uncertain which species are represented in the Norwegian fauna outside the lowland species *P. obscura* (Fallén, 1814).

The Micropezidae and Psilidae are both represented with a small material, which give no basis for discussion. The families Bibionidae, Xylophagidae, Clusiidae and Piophilidae have been treated extensively in earlier publications referred to above.
ACKNOWLEDGEMENTS
Supports to the field work of this paper has been given by The Norwegian Research Council for Science and the Humanities, grant nos D.65.73-10 and D.65.73-032, given to J.O. Solem.

REFERENCES
The thrips fauna near Kongsvoll in the Dovrefjell mountains (Sør-Trøndelag County, South Norway); distribution and habitat/host plant. (Thys., Insecta)*

ANDERS OLSEN

A total of 27 thrips species were recorded near Kongsvoll in the Dovrefjell mountains (840—1684 m a.s.l.). Ten species were recorded above the tree border (abt 1100 m a.s.l.). Only Apterothrips secticornis (Trybom), Aptinothrips stylifer Trybom and Thrips vulgatissimus Haliday were found in the middle alpine (>1430 m a.s.l.). Several species had low population densities in the area, probably due to climatic conditions or to lack of food plants near their elevation limit. Other species were present in high numbers. The most abundant thrips species was T. vulgatissimus, whose larval development is largely dependent on the extensive Salix vegetation in the area.

Scolothrips uzeli Scillé is reported from Norway for the first time.

Anders Olsen, University of Trondheim, Department of Zoology, N-7055 Dragvoll, Norway.

INTRODUCTION

Kjellsen (1975) studied life history and population dynamics of Aptinothrips stylifer Trybom and Apterothrips secticornis (Trybom) on Hardangervidda (Hordaland County, West Norway). More recently Olsen & Sollem (1982) listed some thrips records from Norwegian highlands, and Olsen (1984) reported sex ratios of three species of thrips living near Kongsvoll in the Dovrefjell mountains (Sør-Trøndelag County, Central Norway). Informations on the Norwegian alpine thrips fauna from other sources are fragmentary.

The main objective of the present study was an inventory of the thrips fauna at Dovrefjell. Collecting started in 1976, but the main field work was done during the summers 1977, 1978, and 1984.

Nomenclature and systematic arrangement of thrips species follow Jacot-Guillarmod (1970—78), apart from T. atratus Haliday, T. pini Uzel, and T. vulgatissimus Haliday which in accordance with Mound et al. (1976) are transferred from Taeniothrips Amyot & Serville to Thrips L. In addition, the catalogue of Jacot-Guillarmod does at present not comprise subfam. Phlaeothripinae (fam. Phlaeothripidae, suborder Tubulifera), and nomenclature and systematic arrangement here follow Priesner (1964). For identifications the keys in Ahlberg (1926), Maltbek (1932), Priesner (1964), Mound et al. (1976), and Schliephake & Klint (1979) were used. Plant nomenclature is in agreement with Lid (1974).

SAMPLING LOCALITIES

Sampling was carried out near Kongsvoll in the Dovrefjell mountains. The sampling area includes the upper part of the Drivdalen valley, Høgsnyta, Kongsvoll, Grønbakken, the Gåvålia areas, and the western parts of the Knutshø mountains. For detailed accounts on geology, climate and vegetation in the area, see e.g. Gjære (1975), Nordhagen (1943), Strand (1975). Because of conspicuous differences in vegetation and of course altitude, an individual species list is presented from each of the following parts of the area sampled:

1) The mixed vegetation along the Driva river (840 to 940 m a.s.l.). Near Kongsvoll biological station small fields alternate...
with heather moor, willow thickets, birch shrubs, and former fields and/or meadows in different regrowing stages. Agricultural impact on vegetation decreases to the north and the south. In the north the birch forest stretches down to the valley bottom before shrub or heather moor take over. To the south the river mainly flow through shrub or heather vegetation.

2) The terrain against Gávália (abt 940 to 1000 m a.s.l.). In the south and south-eastern parts of the sampling area, against Gávália, there is a rather large poorly-wooded terrain, in which bogs and tarns alternate with heathers and ridges. The drier parts are largely covered by shrubs dominated by *Salix glauca* L., *Salix lapponum* L., and *Betula nana* L., and, more scattered, *Juniperus communis* L.

3) The subalpine birch forest (840 to 1100 m a.s.l.). Both blueberry and meadow birch forests are present. In some localities, especially on the western side of the Drivdalen valley, a luxuriant understory vegetation is present, often dominated by *Aconitum septentrionale* Koelle and *Geranium sylvaticum* L.

4) The lowalpine region (abt 1100 to 1300—1450 m a.s.l.). Both blueberry and meadow birch forests are present. In some localities, especially on the western side of the Drivdalen valley, a luxuriant understory vegetation is present, often dominated by *Aconitum septentrionale* Koelle and *Geranium sylvaticum* L.

DISTRIBUTION AND HABITAT/HOST PLANT OF THE THRIPS SPECIES WITHIN THE SAMPLING AREA IN THE DOVREFJELL MOUNTAINS

In Tab. 1 the available data on guest/host relationships and habitat preference of the thrips species at Dovrefjell are summarized. However, we should bear in mind that thrips are small insects easily spread by wind, and some of the records may refer to animals accidentally settled on unrelated vegetation.

It is very difficult to judge how far the observed distribution (Tab. 2) agrees with the real species distribution in the area, because the collection effort varied from place to place. In addition, several of the recorded species apparently have extremely low population densities at Dovrefjell and may therefore, by chance, have been missing in some of the collections. Nevertheless, it seems reasonable that the observed distribution pattern reflects differences in the climate and vegetational cover between the localities. Thus, the relatively high number of thrips species recorded in the mixed vegetation along the Driva...
Table 1. Habitat/host plants for thrips species within the sampling area in the Dovrefjell mountains. ad: adult, L1: first instar larvae, L2: second instar larvae, PP: pre-pupae, P1: first instar pupae, P2: second instar pupae. ¹) = only a single record.

<table>
<thead>
<tr>
<th>Thrips species</th>
<th>Habitat/host plant</th>
<th>Altitude (abt m)</th>
<th>Stage</th>
<th>adg</th>
<th>ado</th>
<th>L1</th>
<th>L2</th>
<th>PP</th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeolothrips ericae</td>
<td>Arctostaphylos alpina on a dry ridge</td>
<td>1000</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeolothrips faciatus</td>
<td>Taraxacum sp. on meadow</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sericothrips abnormis</td>
<td>Astragalus alpinus along the E6 road, Vegetation of grasses, A. alpinus etc. near the birch forest (beating)</td>
<td><1000</td>
<td>X X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sericothrips gracilicornis</td>
<td>Trifolium pratense along the E6 road, Astrolagus frigidus in birch forest and elsewhere</td>
<td><950</td>
<td>X X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astragalus Alpinus along the E6 road, Astragalus norvegicus along the E6 road</td>
<td><950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetation of Arctostaphylos alpina etc. on a dry ridge near the E6 road (beating)</td>
<td>880</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meadow vegetation of Astragalus spp., Geranium sylvaticum, grasses etc. (beating)</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chirothrips hamatus</td>
<td>Arrhenatherum pubescens on meadow</td>
<td>900</td>
<td>X X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meadow (suction trap/sweeping)</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chirothrips manicatus</td>
<td>Meadow (suction trap/sweeping)</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apterothrips secicornis</td>
<td>Urtica dioica near the E6 road, Pedicularis oderei on marshy ground, also in the low alpine</td>
<td><1700</td>
<td>X X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meadow vegetation: grasses, Astragalus spp., Geranium sylvaticum etc. (beating)</td>
<td><950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understory vegetation in birch forest, most grasses (beating/sweeping)</td>
<td><1100</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>low and middle alpine herbs, grasses, Hieracium spp., Geranium sylvaticum etc. (beating)</td>
<td><1440</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aptinothrips stylifer</td>
<td>Urtica dioica near the E6 road</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melandrium rubrum on meadow</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astragalus frigidus on bog</td>
<td>950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astragalus alpinus, also along the E6 road</td>
<td><950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedicularis cederi in mire soaks in birch forest</td>
<td>950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbs including grasses and several other plant species on meadows, in birch forest, and in the alpine regions. Often damp places (beating/sweeping)</td>
<td><1440</td>
<td>X X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belothrips acuminatus</td>
<td>Calluna boreale on meadow and along an old road in a dry grass heath</td>
<td><1000</td>
<td>X X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxythrips ajugae</td>
<td>Meadow (suction trap)</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vegetation in a meadow soak in the birch forest (beating)</td>
<td>950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxythrips bicolor</td>
<td>Trifolium pratense near the E6 road, Meadow vegetation: grasses, Astragalus spp. etc. (beating)</td>
<td>950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratothrips ericae</td>
<td>Calluna vulgaris</td>
<td><1000</td>
<td>X X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bartsia alpina</td>
<td>1000</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heather vegetation, most Arctostaphylos alpina. Moist and dry places (beating)</td>
<td><1120</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankliniella tenuicornis</td>
<td>Meadow (suction trap)</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betula pubescens, also on individual trees outside the birch forest</td>
<td><1150</td>
<td>X X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juniperus communis in birch forest</td>
<td>850</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urtica dioica near birch forest</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calluna palustris in a moist place in birch forest</td>
<td>950</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aconitum septentrionale in birch forest</td>
<td><1100</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips species</td>
<td>Habitat/host plant</td>
<td>Altitude (abt m)</td>
<td>Stage adj.</td>
<td>Stage ad.o</td>
<td>T1</td>
<td>L1</td>
<td>L2</td>
<td>PP</td>
<td>P1</td>
<td>P2</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>------------</td>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Astragalus frigidus in birch forest</td>
<td><1100</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geranium sylvaticum in birch forest</td>
<td><1100</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation of grasses and other herbs in and near birch forest (sweeping/beating)</td>
<td>1150</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scolothrips uzeli</td>
<td>Juniperus communis in dwarf shrub heath</td>
<td>1250</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taeniostriphs picipes</td>
<td>Gymnadenia conopsea in birch forest</td>
<td>950</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prrtta dioica near the E6 road</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melandrium rubrum on meadow</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calla palustris on moist ground on meadow and in the birch forest</td>
<td><950</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aconitum septentrionale in birch forest and other kinds of vegetation, also in the low alpine</td>
<td>Astragalus frigidus in birch forest</td>
<td><1150</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geranium sylvaticum in birch forest and other kinds of vegetation, also in the low alpine</td>
<td><1150</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartsia alpina along the E6 road</td>
<td><1150</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedicularis oederi</td>
<td>Tanacetum sp. on meadow and along the E6 road</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbs (grasses etc.) on meadow, in the birch forest, and in the low alpine (sweeping/beating)</td>
<td><1100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips atratus</td>
<td>Melandrium rubrum on meadow</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birch forest (emergence traps)</td>
<td>1000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips dilatatus</td>
<td>Pedicularis oederi, also in the low alpine</td>
<td><1100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bartsia alpina, on bog and near the E6 road</td>
<td><950</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland vegetation, also in the low Alpine (beating)</td>
<td><1100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understory vegetation in the birch forest (grasses, Geranium sylvaticum etc.) (beating)</td>
<td><950</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips hukkineni</td>
<td>Trifolium pratense along the E6 road</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanacetum spp. along the E6 road</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hieracium spp. along the E6 road</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calla palustris on moist meadow</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadow vegetation (grasses etc.) near the E6 road (beating/sweeping)</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips juniperinus</td>
<td>Pinus sylvestris, transition zone between meadow and birch forest</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus communis in different habitats, also in birch forest and low alpine dwarf shrub heath</td>
<td><1150</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips major</td>
<td>Pras octopetala in low alpine avens heath</td>
<td>1150</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus alpinus in birch forest</td>
<td>1100</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus frigidus in birch forest and in the low alpine</td>
<td><1150</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix glauca in a dry grass heath</td>
<td>930</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salix myrsinifolia in the low alpine</td>
<td>1150</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula nana in birch forest and in the low alpine</td>
<td><1250</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedicularis lanigera in the low alpine</td>
<td>1200</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedicularis oederi on marshy ground in birch forest</td>
<td>1000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbs in dry places and on marshy ground, including species of grasses, Astragalus spp., Achillea millefolium etc. (beating/sweeping)</td>
<td><1250</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips menyanthidis</td>
<td>Calla palustris in a line soak in birch forest</td>
<td>950</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrips validus</td>
<td>Calla palustris on moist meadow</td>
<td>900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taraxacum sp. on meadow and along the E6 road</td>
<td><900</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

83
<table>
<thead>
<tr>
<th>Thrips species</th>
<th>Habitat/host plant</th>
<th>Altitude (abt m)</th>
<th>Stage</th>
<th>adp</th>
<th>ad.o</th>
<th>L1</th>
<th>L2</th>
<th>PP</th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrips vulgarissimus</td>
<td>Juniperus communis in birch forest and in the low alpine</td>
<td><1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Betula nana in birch forest and low alpine dwarf shrub heath</td>
<td><1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prunus dioica on meadow and along the E6 road</td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viscaria alpina in the low alpine</td>
<td>1130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melandrium rubrum on meadow</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silene vulgaris on meadow and along the E6 road</td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calca paucstris on moist ground on meadow</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aconitum septentrionale in birch forest, low alpine and elsewhere</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Saxifraga aizoides near a brooklet</td>
<td>1130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prunus padus in birch forest</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorbus aucuparia in birch forest</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comarum palustre in the low alpine</td>
<td>1150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dryas octopetals in mountain avens heath</td>
<td>1150-1470</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trifolium pratense on meadow and along the E6 road</td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lotus corniculatus along the E6 road</td>
<td><1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astragalus alpinus along the E6 road</td>
<td><1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Astragalus frigidus in several localities, also in birch forest and the low alpine</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geranium sylvaticum in birch forest, low alpine and elsewhere</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix glauca in the low alpine willow zone and several other localities</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix herbacea in the low alpine</td>
<td><1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix lanata in the low alpine willow zone and several other localities</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix myrsinites in low alpine willow shrub heath</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix phylicifolia in the low alpine willow zone and several other localities</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Celluna vulgaris in different localities, also on bog</td>
<td><1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedicularis lagopoides in the low alpine</td>
<td>1150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedicularis oederi in moist places</td>
<td><1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>within almost all parts of the sampling area</td>
<td><1150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parnassia alpina near the E6 road and in the low alpine</td>
<td><1150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Callium boreale on meadow</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polygala virgatae along the E6 road</td>
<td><950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Achillea millefolium on meadow and along the E6 road</td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chrysanthemum leucanthemum on meadow</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactuca alpina in low alpine tall meadow</td>
<td>1130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taraxacum spp. along the E6 road, in birch forest and in the alpine regions</td>
<td><1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hieracium spp. along the E6 road, in birch forest and in the low alpine</td>
<td><1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbs and heather vegetation, Peaten or swept from a large array of vegetation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kinds; meadow vegetation including grasses and species of Geranium sylvaticum,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aconitum septentrionale and Achillea millefolium; understory vegetation in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>birch forest; wetland vegetation (also in the low, and middle alpine); Acostostasyphus alpinus-dominated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vegetation on dry ridges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megathrips lativentris</td>
<td>Litter under Betula pubescens in birch forest</td>
<td><1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haplothrips niger</td>
<td>Trifolium pratense on meadow and along the E6 road</td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbaceous vegetation along the E6 road (beating)</td>
<td>880</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haplothrips propinquus</td>
<td>Achillea millefolium on meadow and along the E6 road</td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. The thrips species recorded within each of the sampling localities in the Dovrefjell mountains

<table>
<thead>
<tr>
<th>The subalpine birch belt (850-1100 m a.s.l.)</th>
<th>The mixed vegetation along the Driva river (23 species)</th>
<th>The terrain against Gavalia (11 species)</th>
<th>The subalpine birch forest (14 species)</th>
<th>The alpine regions (>1100 m a.s.l.)</th>
<th>The low-alpine region (10 species)</th>
<th>The middle-alpine region (3 species)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeolothrips ericae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aeolothrips faciatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sericothrips abnormis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sericothrips gracilicornis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chirothrips hamatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chirothrips manicatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Apterothrips secticornis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aptinothrips stylifer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Belothrips acuminatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oxythrips alugas</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oxythrips bicolor</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ceratothrips ericae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Frankliniella tenuicornis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hycterothrips latus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Scolothrips uzelli</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Taeniothrips picipes</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips atratus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips dilaticatus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips hukkieni</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips juniperinus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips major</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips menyanthidis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips validus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Thrips vulgatissimus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Megathrips lativentris</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haplothrips niger</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Haplothrips prolinquus</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

may be related to the diverse flora and low altitude of this part of the sampling area. Correspondingly, the much lower number of species recorded in the other parts of the sampling area may be ascribed to a more homogenous vegetation, and/or the more harsh climate at higher altitudes.

The numbers of collected specimens should not without caution be taken as an indication of relative species density. For some species the numbers also refer to large numbers of specimens collected for phenological studies, and the collection methods do not offer the same efficiency for all species. On the other hand, several samples contain immatures, which, at present, have not been determined, and hence are not included here.

Aeolothrips ericae Bagnall, 1920

The only record from Dovrefjell refers to a single female specimen (*f. mulleri*) beaten from heather of *Arctostaphylos alpina* (L.) Spreng. in the terrain against Gavalia (abt 1100 m a.s.l.) (Host plant reported by Olsen & Solem (1982) as *Érica* sp., was a writing error of Ericaceae species.) In the vicinity of Trondheim the preferred hosts of the species seem to be *Trifolium pratense* L. and *Lotus corniculatus* L. (Olsen & Solem 1982). Records reported in the literature are predominantly from plants belonging to Fabaceae and Ericaceae, but in addition the species has been collected from plants from a variety of families (Priesner 1926—28, Mound et al. 1976, Schliephake & Klint 1979). According to Bagnall, the larvae is carnivorous (Priesner 1926—28).

Aeolothrips faciatus (Linné, 1758)

A single specimen, a male, was beaten from *Taraxacum* sp. in the mixed vegetation along Driva (abt 950 m a.s.l.). According to Jacot-Guillarmod (1970) and Schliephake & Klint (1979) the species is predator on thrips and mites, without any plant preference.
Sericothrips abnormis (Karny, 1909)

Two micropterous females were collected in the mixed vegetation along Driva. One was beaten from Astragalus alpinus L., the other swept from meadow, where also A. alpinus was present. Elsewhere in Norway, the species has been collected from L. corniculatus (Olsen & Solem 1982). Mound et al. (1976) claim L. corniculatus to be the host species, while e.g. Priesner (1964) and Schliephake & Klint (1979) list additional Fabaceae genera.

Sericothrips gracilicornis Williams, 1916

A common species in flowers of Astragalus frigidus L. and A. alpinus at the Dovrefjell mountains (coll. ad. + larvae, N >> 100). Obviously more numerous in the birch forest than in the other sampling localities. On Tjome (Vestfold county) and Rombakken (Nordland county) numerous specimens have been collected from V. cracca (Olsen & Solem 1982), and according to Mound et al. (1976) and Schliephake & Klint (1979) Vicia cracca L. is the preferred host of the species. However, records have also been reported from other species of Leguminosae, and from unrelated plant genera as Galium, Salix, Melanopyrum, Teucrium, Secale, and Avena (Jacob-Guillarmod 1971).

Chirothrips hamatus Trybom, 1895

Females and larvae were swept from Arrhenatherum pubescens in the mixed vegetation along the Driva river (coll. ad. + larvae, N > 10). The species was not found on the common Alopecurus geniculatus L., even though the close relative Alopecurus pratensis L., in addition to Phleum spp., belong to its main host plants elsewhere (Priesner 1964, Jacob-Guillarmod 1971, Schliephake & Klint 1979, Olsen & Solem 1982).

Chirothrips manicatus Haliday, 1836

Females were taken in the mixed vegetation along the Driva river by suction traps, and by net-sweeping on different meadow grass species (coll. N > 5). At the other localities the species was not found, although potential host vegetation for this rather polyphagous grass-thrips species occurred there. It may therefore be possible that the species reach its elevation limit abt 900 m a.s.l. in the area. Elsewhere in Norway specimens of C. manicatus have been collected from different grass-

Sericothrips abnormis (Karny, 1909)

Two micropterous females were collected in the mixed vegetation along Driva. One was beaten from Astragalus alpinus L., the other swept from meadow, where also A. alpinus was present. Elsewhere in Norway, the species has been collected from L. corniculatus (Olsen & Solem 1982). Mound et al. (1976) claim L. corniculatus to be the host species, while e.g. Priesner (1964) and Schliephake & Klint (1979) list additional Fabaceae genera.

Sericothrips gracilicornis Williams, 1916

A common species in flowers of Astragalus frigidus L. and A. alpinus at the Dovrefjell mountains (coll. ad. + larvae, N >> 100). Obviously more numerous in the birch forest than in the other sampling localities. On Tjome (Vestfold county) and Rombakken (Nordland county) numerous specimens have been collected from V. cracca (Olsen & Solem 1982), and according to Mound et al. (1976) and Schliephake & Klint (1979) Vicia cracca L. is the preferred host of the species. However, records have also been reported from other species of Leguminosae, and from unrelated plant genera as Galium, Salix, Melanopyrum, Teucrium, Secale, and Avena (Jacob-Guillarmod 1971).

Chirothrips hamatus Trybom, 1895

Females and larvae were swept from Arrhenatherum pubescens in the mixed vegetation along the Driva river (coll. ad. + larvae, N > 10). The species was not found on the common Alopecurus geniculatus L., even though the close relative Alopecurus pratensis L., in addition to Phleum spp., belong to its main host plants elsewhere (Priesner 1964, Jacob-Guillarmod 1971, Schliephake & Klint 1979, Olsen & Solem 1982).

Chirothrips manicatus Haliday, 1836

Females were taken in the mixed vegetation along the Driva river by suction traps, and by net-sweeping on different meadow grass species (coll. N > 5). At the other localities the species was not found, although potential host vegetation for this rather polyphagous grass-thrips species occurred there. It may therefore be possible that the species reach its elevation limit abt 900 m a.s.l. in the area. Elsewhere in Norway specimens of C. manicatus have been collected from different grass-

Apterothrips secticornis (Trybom, 1896)

Not uncommon on moist ground in the mixed vegetation along the Driva River, in the birch forest, and in the alpine regions (coll. ad. + larvae, N > 80). Females and larvae of the species were swept and beaten from different grasses, but also from Pedicularis oederi Wahl. Mond et al. (1976) and Schliephake & Klint (1979) claim grasses to be prime hosts of the species, although records from different other plants have been reported (Priesner 1926-28, Jacob-Guillarmod 1974).

Apterothrips stylifer Trybom, 1894

Recorded from all parts of the sampling area, up to 1430 m a.s.l. (coll. ad. + larvae, N >> 250). Most specimens were beaten or swept from different grasses, but a few individuals were found on other plant species. Recorded also on rich bogs. Accordantly, Priesner (1926-28) reported the species to extend its distribution up into the high mountains, predominantly on moist ground. The species has been reported from a wide array of grass species, although Dechampsia and Dactylis seem to be preferred hosts (Priesner 1926-28, 1964, Palmer 1975, Mound et al. 1976, Schliephake & Klint 1979). Also in Norway the species seem to be associated with Gramineae species. However, specimens are commonly found on other plant species (Olsen & Solem 1982).

Belothrips acuminatus (Haliday, 1836)

Adults and larvae were collected from Galium boreale L. on meadow in the mixed vegetation along the Driva river and in the terrain against Gávánía (coll. ad. + larvae, N > 50). No records of the species from the birch forest and the alpine regions were made, although G. boreale is present up to above the tree border (personal observation). G. boreale seems to be its preferred host also near
Trondheim (Olsen & Solem 1982), although Jacot-Guillarmod (1974) and Mound et al. (1976) report *Galium vernum* L. to be its main host plant. Indeed, both *G. vernum* and its relative *Galium palustre* L. are commonly found near Trondheim, but the species has not been found on these plants. In addition to the *Galium* species, *B. acuminatus* has been recorded from other plants of the Rubiaceae family, in addition to plants belonging to several other families, viz. Poaceae, Scrophulariaceae, Lamiaceae, Rosaceae, Fabaceae, Caryophyllaceae, and Compositae (Jacot-Guillarmod 1974).

Oxythrips ajugae Uzel, 1895

Only *f. bicolor* was recorded on Dovrefjell; two females were found on Meadow in the mixed vegetation along the Driva river and one female at abt 950 m a.s.l. in the birch forest. The species is commonly found on conifers, especially *Pinus* spp. (Oettingen 1954, Priesner 1964), and it is possible that *O. ajugae* is bound to the coniferous forest, which is very sparsely represented in the area. However, the species has been reported from a number of shrubs and trees, e.g. *Betula*, *Fraxinus*, *Fagus*, *Quercus*, and *Sorbus*, and from herbaceous plants as *Ajuga reptans* L., *Trollius europaeus* L., *Gerista lutea* L., *Ulex europaeus* L., *Vaccinium myrtillus* L., and *Medicago sativa* L., together with grasses and grain species (Jacot-Guillarmod 1974, Schliephake & Klint 1979). However, it is not stated whether or not collected specimens belong to *f. bicolor*. *F. bicolor* has been collected from flowering *Salix* sp. near Trondheim, and from *Pinus sylvestris* L. near Trondheim and in Røra in Nord-Trøndelag County (Olsen & Solem 1982).

Oxythrips bicolor (Reuter, 1879)

A rare species in the sampling area at Dovrefjell. Two females were found in the mixed vegetation along Driva river, a third in the transition zone between this area and the birch forest (abt 950 m a.s.l.). The species has been reported by several authors as common in buds and flowers of pine trees (Priesner 1964, Jacot-Guillarmod 1974, Mound et al. 1976, Schliephake & Klint 1979), and this is supported by my own collections (Olsen & Solem 1982). As is supposed for *O. ajugae*, *O. bicolor* may be associated with the few coniferous trees in the Kongsvoll area. However, the species is by several authors reported from a variety of different plants (Priesner 1926—28, Jacot-Guillarmod 1974, Olsen & Solem 1982).

Ceratothrips ericae (Haliday, 1836)

The species probably is firmly associated with the heather *C. vulgaris* in the Dovrejell mountains, and records of *C. ericae* were made in all parts of the collecting area, up to above the tree border (coll. ad. + larvae, N > 30). Accordingly records from additional localities in Norway have predominantly been made from this heather species (Olsen & Solem 1982). *C. vulgaris*, in addition to *Erica* and *Vaccinium* species, is claimed by several authors to be the main host plant of the species (Priesner 1926—28, 1964, Oettingen 1954, zur Strassen 1973, Jacot-Guillarmod 1974, Schliephake & Klint 1979).

Frankliniella tenuicornis (Uzel, 1825)

A single female was caught in a suction trap in the mixed vegetation along the Driva river. The seemingly very low density of this polyphagous grass thrips species can not be related to lack of food, as excess of potential host plant species is at hand. Elsewhere in Norway large numbers of the species have been collected from *Secale cereale* L., in addition to records from plant species including *Berteroa incana* (L.) DC., *Agrostis* sp., *C. vulgaris*, *V. cracca*, *T. pratense*, and *Achillea millefolium* L. (Olsen & Solem 1982). In previous literature reported from Graminae; grain and grasses, but also from several flower plants (Priesner 1926—28, 1964, Oettingen 1954, Jacot-Guillarmod 1974, Mound et al. 1976, Schliephake & Klint 1979).

Mycterothrips latus (Bagnall, 1912)

Within the sampling localities in the Dovrefjell mountains *M. latus* follows its host plant, the common birch (*B. pubescens*) up to the tree border (coll. ad. + larvae, N > 1300). Outside the birch forest the species was also recorded from single birch trees, and will possibly always follow its host plant. Apart from the records from birch trees, a few individuals were collected from other plants. This always happened, however, in or in close proximity to the birch forest, and in my opinion these records refer to specimens accidentally settled on unrelated vegetation (Olsen unpubl.). Elsewhere the species has been
collected from birch in Oslo, in Trondheim, and in Lavangen (Troms County). The host specificity of the species was first stated by Morison (1929), and has later been confirmed by several workers (e.g. Titschak 1967, Quick 1977).

Scolothrips uzeli Schille, 1910

Three females, two of which had not completed ecdysis, were collected from *J. communis* in the low alpine region in the eastern part of the sampling areas on Dovrefjell. This is the first and, at present, the only record of this species from Norway (EIS 79: Kongsvoll near Blesbekken, 14 July 1984, 3 ♀ ♀ on *J. communis*, 1250 m a.s.l.). Also previous records are from *Juniperus* (Priesner 1964, Schliephake & Klint 1979), where the species, according to Jacot-Guillarmod (1971) is feeding on mites.

Taeniothrips picipes (Zetterstedt, 1828)

A very common species in the sampling areas in the Dovrefjell mountains, up to about 1200 m a.s.l. Adults and larvae were frequently collected from the large perennials *A. septentrionale* and *G. sylvaticum*, but also other species, viz. *Pedicularis oederi* and *Bartsia alpina* L., seemed to be true hosts of the species (coll. ad. + larvae, N > 4600). Schliephake & Klint (1979) state the species to be confined to Ranunculaceae in deciduous forest, but Priesner (1926—28) and Maltbæk (1932) report records from additional plant species, notably typically spring plants of genera as *Primula*, *Anemone*, *Helleborus*, and *Dentaria*. Similarly, near Trondheim numerous adults have been found on the early spring flowers *Anemone nemorosa* L. and *Hepatica nobilis* Mill., but always in the vicinity of deciduous forests (Olsen & Solem 1982). Larvae have never been recorded on these plants, and probably the visitors come there for feeding only. Besides, the flowering period of the plant species in concern may be to ephemeral for complete development of *T. picipes* larvae.

Thrips atratus Haliday, 1836

Only two specimens, both females, have been recorded from Dovrefjell. One was caught in an emergence trap in the birch belt, about 1000 m a.s.l. The other one was beaten from flowering *Melandrium rubrum* (Weig.) Garcke near Kongsvoll biological station (900 m a.s.l.). Priesner (1926—28) reports records of this species from localities up to 2600 m a.s.l. in the Austrian Alps, presumably from flowers of *Cerastium uniflorum* Clairv. and *Papaver alpinus* L. Beyond that, the species has been reported from a very large number of plant species, although plant species belonging to Caryophyllaceae, Lamiaceae, and Compositae seem to be preferred (Priesner 1926—28, 1964, Jacot-Guillarmod 1975, Mound et al. 1976, Schliephake & Klint 1979). Near Trondheim the species has been collected from *C. vulgaris*, *A. nema­rosa*, *Campanula latifolia* L., *Campanula ro­tundifolia* L., *T. pratense*, and *Taraxacum* sp. (Olsen & Solem 1982).

Thrips dilatatus Uzel, 1895

Records of this species from the sampling localities on Dovrefjell have predominantly been made from vegetation on humid ground, notably from *B. alpina* and *P. oederi*. Recorded from all the sampling localities, up to 1150 m a.s.l. (coll. ad., N = 54). Accordantly, records reported in the literature are predominantly from Scrophulariaceae species, viz. *Euphrasia, Pedicularis, and Rhinanthes* (Priesner 1926—28, 1964, Jacot-Guillarmod 1975, Mound et al. 1976, Schliephake & Klint 1979), generally in humid places (Schliephake & Klint 1979). However, near Trondheim numerous specimens have been collected by net-sweeping and beating meadow herbace in rather dry localities (Olsen & Solem 1982). Except for one macropterous and one hemimacropterous female, all specimens recorded from Dovrefjell were micropterous.

Thrips hukkineni Priesner, 1937

In the Dovrefjell mountains collected mainly from *T. pratense*, *Hieracium* sp. and *Caltha palustris* L. in the mixed vegetation along Driva (coll. ad. N > 130). Elsewhere in Norway recorded from different *Taraxacum* and *Hieracium* species, but also from other plant species, e.g. *Solidago virgaurea* L., *C. rotundifolia*, *Matricaria inodora* L., *Chrysanthemum leucanthemum* L., *S. cereale*, *V. cracca*, and *A. millefolium* (Olsen & Solem 1982). Accordantly, previous records are predominantly from Compositae species, but also from several other plants (Priesner 1964, Jacot-Juillarmod 1975).
Thrips juniperinus Linné, 1758

In the sampling areas at Dovrefjell, the species seems to follow J. communis firmly, also above the tree border. In addition to the records from J. communis, a single specimen was beaten from P. sylvestris (coll. ad. + larvae, N > 200). Elsewhere in Norway only recorded from J. communis (Olsen & Solem 1982), and in former literature Juniperinus is reported to be the main host plant of the species (Priesner 1926—28, 1964, Jacot-Guillarmod 1975, Mound et al. 1976, Schliephake & Klint 1979).

Thrips major Uzel, 1895

In the Dovrefjell mountains recorded from all the sampling localities (coll. ad. + larvae, N >> 400). Although adult specimens were collected from several herbaceous plants (Table 1), B. nana obviously is the main host of the larvae in the area. This may be worth noting, as T. major in former literature is only regarded as a polyphagous flower thrips species (Priesner 1964. Jacot-Guillarmod 1975, Schliephake & Klint-1979). The adjustment to breeding on B. nana may be caused by the short summer season in the high mountains, which bring about a short flowering period of potential herbaceous host plants. Moreover, B. nana offer a long and stable food supply, in addition to protective microhabitats for larvae and pupae. Comprising, M. latus was not found on B. nana in the area, even where nearby infested B. pubescens was present.

Thrips menyanthidis Bagnall, 1923

Five adult female specimens were collected from C. palustris in a moist place in the birch forest (abt 950 m a.s.l.) on Dovrefjell. Near Trondheim adults and larvae have been collected from Menyanthes trifoliata L. (Olsen & Solem 1982). Also previous records are predominantly from this plant species, although additional records have been made from e.g. Passiflora spp. and Pedicularis palustris L. (Priesner 1964, Jacot-Guillarmod 1975, Schliephake & Klint 1979).

Thrips validus Uzel, 1895

Within the sampling area on Dovrefjell, records were made only from the mixed vegetation along the Driva river. Most specimens were recorded from Taraxacum sp., but specimens were also found on flowering C. palustris. Previous reports give Compositae flowers as preferred hosts (Jacot-Guillarmod 1975, Mound et al. 1976, Schliephake & Klint 1979). Similarly, near Trondheim several records have been made from Taraxacum spp., in addition to records from other plants (Olsen & Solem 1982).

Thrips vulgatissimus Haliday, 1836 (Fig. 1)

This is the most abundant thrips species in the Dovrefjell mountains, recorded in all the sampling localities up to about 1600 m a.s.l. (coll. ad. + larvae, N > 18000). The very large population in the area is associated with the ability of the species to exploit the extensive Salix vegetation for its larval development, and almost every herbaceous plant as a food resource for newly hatched adults (see Table 1). Moreover, the species is active at very low temperatures, and initiates its reproductive cycle in the spring as soon as the Salix buds. In addition, the population at Dovrefjell is purely parthenogenetic (Olsen 1984), which allows a very fast population increase. Also near Trondheim, as well as in other localities in Norway, the species is very common, and records have been made from numerous plant species (Olsen & Solem 1982). Accordingly, in previous literature the species is stated to be extremely polypha-
gous (e.g. Jacot-Guillarmod 1975, Mound et al. 1976, Schliephake & Klint 1979), and Morison (1929) reports records from 102 native plants species in Great Britain.

Megathrips lativentris (Heeger, 1852)

At Dovrefjell recorded from litter in the birch forest (coll. ad. + larvae, N > 10). Also near Trondheim the species has been recorded in a similar habitat (Olsen & Solem 1982), and according to Mound et al. (1976) it feeds on fungus spores. Previously recorded from litter under *Salix, Corylus, Betula, Fagus, and Quercus*, in addition to records from the plant species *Acer campestre* L., *U. europaeus*, grass, and *Erica arborea* L. (Priesner 1926-28, 1964, Mound et al. 1976, Jacot-Guillarmod 1978). Also recorded from nests of birds and rodents (Schliephake & Klint 1979).

Haplothrips niger (Osborn, 1883)

Only recorded from the mixed vegetation along the Driva river in the Dovrefjell mountains, in which locality numerous specimens were collected from *T. pratense* along the roadside (coll. ad. + larvae, N > 130). Above 900 m a.s.l. no records of the species were made, although *T. pratense* is commonly found up to about the tree border. Also near Trondheim *T. pratense* apparently is the main host of the species, although single individuals have been found on other plants (Olsen & Solem 1982). Accordantly, Priesner (1964) states *T. pratense* as the main host of the species, although he reports records from other *Trifolium* species, in addition to records from other plants, viz. *Anthyllis, Astragalus, Coronilla, Cytisus, Robinia, Lotus* and *Medicago*.

Haplothrips propinquus Bagnall, 1933

Within the sampling areas in the Dovrefjell mountains, numerous specimens were collected from *A. millefolium* in the mixed vegetation along Driva (coll. ad. + larvae, N > 1400). However, as was the situation for *H. niger*, the species was not recorded above about 900 m a.s.l. *A. millefolium* is reported to be the main host of the species by both Mound et al. (1976) and Schliephake & Klint (1979), and also near Trondheim this is apparently the situation. However, single specimens are, in addition, recorded from other plants, viz. *M. inodora* and *C. latifolia* (Olsen & Solem 1982).

ACKNOWLEDGEMENTS

I am greatly indebted to Dr. J.O. Solem (Trondheim, Norway), for valuable practical help and professional guiding during the present study. I also wish to thank Dr. L.A. Mound (England) and Dr. R. zur Strassen (BRD), who have checked my determinations on thrips species and corrected some of them. Simen Bretten and his wife Eli offered me practical help and suitable working and living conditions during the field work in the Dovrefjell mountains, and this is highly appreciated. Finally I will thank I. Harder, who has made the typing.

REFERENCES

Received 1 Nov. 1986.
FOUR SPECIES OF TIPULIDAE (DIPTERA) NEW TO NORWAY
TROND HOFSVANG

Tipula (Lunatipula) alpina Loew, 1873, Tipula (Savtshenkia) staegeri Nielsen, 1922, Tipula (Savtshenkia) benesignata Mannheims, 1954 and Tipula (Pterelachisus) middendorffi Lackschewitz, 1936 are reported from Norway for the first time.

One male of Tipula (Lunatipula) alpina Loew, 1873 was collected in oak woods 4 July 1978 in AAY Grimstad: Hesnes (EIS 6). According to Tjeder (1955) the species is reported from Skåne and Bohuslän in Sweden.

In Zoological Museum, University of Bergen, are two males and one female of Tipula (Savtshenkia) staegeri Nielsen, 1922 from HOY Bergen: Fana (EIS 30), 26 September 1965 (leg. A. Løken, det. B. Tjeder). This material have not previously been published, and the species is new to the Norwegian fauna. In Sweden this species is collected in Skåne and Västergötland (Tjeder 1955).

One male of Tipula (Savtshenkia) benesignata Mannheims, 1954 was caught in a suburb garden in AK Oslo: Munkerud (EIS 28) 1 September 1985. T. (S.) benesignata is known from Dalarne, Lycksele Lappmark, Lule Lappmark and Torne Lappmark in Sweden (Tjeder 1974).

In the surroundings of Kongsvoll in the Dovrefjell mountains (STI Oppdal: Kongsvoll, EIS 79) an extensive investigation of the insect fauna have been carried out. Several males of Tipula (Pterelachisus) middendorffi Lackschewitz, 1936 were caught in Malaise traps (leg. J.O. Solem). More information on distribution, phenology etc. will be published elsewhere (Hofsvang et al. 1987). T. (P.) middendorffi is reported new to Fennoscandia (Theowald 1980).

ACKNOWLEDGEMENTS
I wish to thank Dr. Bo Tjeder, Lund and Lita Greve Jensen, Zoological Museum, Bergen, for permission to include unpublished data on T. (S.) staegeri.

REFERENCES

Received 14 April 1986

ANOMALOUS MALE OF APATANIA STMGMATELLA (ZETTERSTEDT) (TRICHOPTERA, LIMNEPHILIDAE)
JOHN O. SOLEM

A male of Apatania stigmatella (Zetterstedt), which had not developed claspers on the genitalia, is figured and commented on.

John O. Solem, University of Trondheim, the Museum, Erling Skakkesgt. 47, 7000 Trondheim.

In a light trap collection of caddisflies, sampled at Engan, Oppdal county, S.-Trøndelag province, 11...
Aug. 1977, a male Apatania stigmatella, which differed from the normal A. stigmatella males, was found. This odd specimen was also normal looking, except for the genitalia. Here, the claspers were missing (Fig. 1). The claspers are quite conspicuous in A. stigmatella males, but in this specimen, they had never developed. At the first sight the specimen looked as a new species, but more thorough examination revealed that the remaining parts of the genitalia agreed with those of a normal A. stigmatella male. I have seen several hundreds of males from this area, and this was the only anomalous A. stigmatella found. Normal looking males of A. stigmatella are figured in e.g. Malicky (1983) and Tobias & Tobias (1981).

REFERENCES

Received 2 April 1986

AGRIOTYPUS ARMATUS CURTIS, 1832
(HYMENOPTERA, ICHNEUMONIDAE, AGRIOTYPINAE) IN NORWAY
FRED MIDTGÅRD
ABSTRACT
Agriotypus armatus Curtis, 1832 (Hymenoptera, Ichneumonidae, Agriotypinae) is reported new to the Norwegian fauna. Two specimens were found at Agdenes in Central Norway.

Fred Midtgård, Norwegian Forest Research Institute, P.O. Box 61, N-1432 Ås-NLH, Norway.

In alcohol preserved material from STY, Agdenes: Storvatnet, EIS 96, 23 Jun. 1973, leg. Solem, coll. Zoological Museum of Trondheim, two females of the striking species Agriotypus armatus Curtis, 1832 were found.

I have not seen any record of this species from Norway, but it has been found in e.g. Sweden and England (Schmiedeknecht 1930) and could be expected here also.

Only this species is known from Europe within the subfamily Agriotypinae, which by Schmiedeknecht (1930) was regarded as a separate family. The larva parasites larvae of Trichoptera living in mountain rivers (Schmiedeknecht 1930).

ACKNOWLEDGEMENTS
I am indebted to J.O. Solem for loan of alcohol preserved material from the Zoological Museum of Trondheim.

REFERENCES

TRICHONCUS VASCONICUS DENIS
(ARANEAE, LINYPHIIDAE) NEW TO NORWAY
ERLING HAUGE
ABSTRACT
The species (1♂ + 1♀) was registered for the first time in Norway, in an open coastal habitat in the south-eastern part of the country.

One ♂ and 1 ♀ were found at Grimestad (VE: Tjome) (south-eastern Norway) July 11, 1985 (A. Fjeldsá coll.) in a very dry locality dominated by open bedrock (dark eruptives) and grasses. Present were also some Viscaria vulgaris, Rumex acetocella and Silene maritima.

The systematic status of this species is uncertain (see Locket et al. 1974, Brignoli 1983) and it is difficult to distinguish from T. saxicola (O.P.-Cambridge) and T. affinis Kulczynski. The present specimens have been identified according to descriptions given by Wiehle (1960) and Locket et al. (1974). Especially the dark coloured tibiae I + II have been a decisive character. The species is new to Norway, and is probably the only species of the genus occurring in the nordic countries, where it seems to be restricted to coastal areas.

REFERENCES
ADDITIONS TO THE KNOWLEDGE OF THE NORWEGIAN SPIDER FAUNA (ARANEAE).

ERLING HAUGE

ABSTRACT

Neoscona adianta (Walckenaer), Araniella opistographa (Kulszynski), Dipoena tristis (Hahn), Dictyna latens (Fabricius) and Clubiona diversa O. P. Cambridge are reported for the first time in Norway, Salticus zebraneus (C. L. Koch) is reported for the second time. Brief comments on the species' pattern of distribution are given.

The species are:
Neoscona adianta (Walckenaer)
At VE: Tjøme, Mostranda, 3 males and 3 females were collected 2 July 1983 in a dry meadow. The species is new to Norway.

This is a palaearctic species (Roewer 1942) which is distributed far into the east (Proszynski & Starega 1971). A southern species in Britain (see Locket & al. 1974). According to Braun & Rabe­ler (1969) and Maurer (1978) the species is absent from Northern Europe. However, it has been re­ported from Denmark (Bøggild 1961, 1962), from Southern Sweden (Kronestedt 1983) and in the USSR (Estonia) (Palmgren 1977). It is absent from the check list of Finland (Palmgren 1977). Thus the species probably is close to its northern limit of distribution in this Vestfold locality.

Araniella opistographa (Kulszynski).
One male was found together with the N. adianta specimens 20 Juli 1983, and is identified with reference to Locket & Millidge (1953, Text-fig. 98B). Much more uncertain are 2 females caught 14 July 1986 in a thicket of Populus tremula in the same area as the males. The epigynes are, however, provided with a relatively long scaphus (see Locket & al. 1974).

The species is distributed in England and Mid­del Europe from Switzerland and Balkan north to the USSR (Estonia) (Braun & Rabe­ler 1969, Braun 1969). In the Nordic countries it is restric­ted to Southern Sweden (Holm 1977) and to south-eastern Finland (Palmgren 1974a). It has previously not been reported from Norway, but may earlier have been confused with the very similar A. cucurbitina (Clerck).

Dipoena tristis (Hahn).
One female was found at AK: Oslo, Sandemåsen (close to the border of Ski community) 6 July 1983 on a turf moor.

This is a species of Middle-Eastern and South­eastern Europe, according to Roewer (1942). In England and Ireland it seems to be uncommon and restricted to the southern parts (see Locket & al. 1974). It has been reported once in Denmark (Lar­sen & Bøggild 1970), and also in the southern parts of Sweden (Kronestedt 1983). In Finland, on the contrary, it seems to be quite common and is distributed far north (Palmgren 1974b). The species is new to Norway.

Dictyna latens (Fabricius).
Two males were found at VE: Tjøme, Mostranda, 20 July 1983 (together with N. adianta). The first record in Norway.

According to Roewer (1954) the species is widespread in Europe. It is, however, in the Nordic countries restricted to southern and south-eastern parts of Sweden (Kronestedt 1983) and to the south-western corner of Finland (Palmgren 1977). Also in the British Isles the species has a southern distribution. The northernmost record is in the most southern part of Scotland (see Locket & al. 1974).

Clubiona diversa O. P. Cambridge.
One male was found at VE: Tjøme, Mostrands, 8 July 1983 in a Phragmites-vegetation. The species is new to Norway.

A European species, previously known north to Northern Scotland (Locket & al. 1974), Denmark (Bøggild 1961, Larsen & Bøggild 1970), Southern and South-western Sweden (Kronestedt 1983) and close to the southern coast of Finland (Huhta 1971, Palmgren 1977).

Salticus zebraneus (C. L. Koch).
One male was found at VE: Tjøme Moutmarka, 28 June 1985, in a meadow with tall herbs.

A south European species, according to Braun (1969). In England known only from the southern eastern areas (Locket & al. 1974). It is reported once in Denmark (Zealand) (Larsen & Bøggild 1970). In Sweden it is known (but obviously sparse) in the southern areas north to Södermann­land (Tullgren 1944), which probably represented the northern limit of distribution, together with a previous report from SE Norway (Akershus) (Waaler 1967) and that from SE Finland (Kare­len) (Palmgren 1977).

REFERENCES

Roewer, C. F. 1942. *Katalog der Araneae l.* Bre­

Tullgren, A. 1944. Salticidae, Thomisidae, Philo­
— 1944. *Salticidae, Thomisidae, Philodromidae och Eusparassidae. Svensk Spindelfauna* 3, Fam. 5—7. Entomologiska Förenin­

Received 16 Dec. 1986.

Soot-Ryen innå at han ikke kunne rå med alt materialet selv, og han sørget for at tidens fremste spesialister fikk gå gjennom museets samlinger og publisere resultatene. I museets årshefter fra årene 1925 til 1944 er det adskillige oversikter over nordnorske insektgrupper ført i pennen av Lensersdorf, Ringdahl, Forsslund, Lackschewitz, Roman, Holdersen, Tjeder, Ossiannilsson og Strand. Men fortsatt står det tusenvis av ubestemte nordnorske insekter fra Soot-Ryens tid.

Soot-Ryen var gjerne knapp i sin etikettering av materialet. Nålen har ofte en etikett med kun et lokalanv - av og til forkortet - og en dato. Heldigvis var han omhyggelig med dateringen, og ved å sortere lokalitetslistene på dato, var det klart at «Skj. 22/6-42» stammer fra Skjøvåkirk i Balsfjord. Ved museene i Bergen og Tromsø har vi lister over nærmere 700 lokalitetsnavn (med tilhørende kommune) fra Soot-Ryens materiale. Disse er til stor hjelp for entomologer som ikke er lokale under bearing av materialet.

Soot-Ryens entomologiske publikasjoner

1942. A list of Norwegian Lycoridae (Diptera Ne-matocera). Norsk ent. Tidsskr. 6, 81–82.

1942. Some Tendipedids (Chironomids) from Spitsbergen collected by Sven Søhme and determined by Dr. M. Goetghheuer. Norsk ent. Tidsskr. 6. 82–83.

GUIDE TO AUTHORS.

FAUNA NORVEGICA Ser. B. publishes papers in English, occasionally in Norwegian and German with an extensive English abstract. Contributors with a native language other than the language used in the paper submitted, are requested to have manuscripts linguistically revised prior to submission. When preparing manuscripts for submission, authors should consult current copies of Fauna norvegica and follow its style as closely as possible. Manuscripts not concurring to the guide to authors will be returned for revision.

Manuscripts should be submitted to the Editor-in-Chief. Send two copies. They must be typewritten, double spaced throughout, on one side of the paper, and wide margins, 5-6 cm on the left. Separate sheets should be used for the following: 1) Title page, with author's name. 2) An abstract, with the name and full postal address of the author underneath. 3) Tables with their headings. 4) Legends to figures. Dates should be referred to as 10-20 Aug. 1970. Underline all generic and species names. Approximate position of figures and tables in the text should be indicated in the margin. All Acknowledgements should be given under a single heading at the end of the text, but before the references.

Figures and Tables. Send two copies. All illustrations should be identified lightly with the author's name and the figure number. The figures and tables should be constructed in proportion to either the entire width of the typed area (40 mm) or to the column width (67 mm).

Nomenclature. The first time a binomen is used in the text the name of its author should be included. Author names should be written in full except L. for Linneaus. Dates can be included when considered necessary, i.e. Rhyacophila nubila (Zetterstedt, 1840).

References. In the text: Black (1979), Black & Blue (1973:100), or «as noted by Green (1978) and Black (1979)». Multiple references should be given in chronological order, i.e. (Black & Blue 1973, Green 1976, 1979, Black 1978). List of references are to be unnumbered and in international alphabetical order (i.e. A = AA, E and A = AE, Ø and O = OE). Titles of journals should be abbreviated according to the World List of Scientific Periodicals. Do not refer to papers «in prep.» among the references.

Examples:

Journal:

Book:

Chapter:

Proofs. Two copies of the first proof will be sent to the author. One corrected copy should be returned to the editor without delay. Alterations should be limited to correcting typesetting errors. Extensive alterations will be charged to the author.

Reprints. Twentyfive reprints are supplied free (fifty with multiple authorships). Additional reprints can be ordered at a charge (an order form is sent with the proofs).

FAUNA NORVEGICA Serie A, B, C utkommer med tilsammen 5 hefter i løpet av en årgang.

For at heftene skal komme inn under Postverkets regler for billig serie-utsendelse, forlanges det at heftene i de tre seriene av Fauna norvegica i hvert kalenderår gis fortløpende nummer fra 1 til 5. Det vil kunne bli noe tilfeldig hvilke hefter som blir gitt de respektive nummer på grunn av uregelmessigheter med rekkefølgen i løpet av året.

Referansemessig skal vi aldri ta hensyn til nummeret i øvre hjørne på omslaget (inne i firkanten). Det vi skal ta hensyn til er de oppgitte data for de respektive serier. Det er disse data som gir den korrekte litteraturreferansen, og det er disse forkortelsene som står oppført i Abstract til hver artikkkel og på særtrykkene.

Post-office regulation necessitate numeration of all five issues in the three Series (A, B, C) in the order of their publication. This number is printed in the top right-hand corner of the front cover (in the square). This number should be ignored when citing issues or papers. The relevant data are given in connection with the number of each series. These numbers provide the correct literature referance and it is these that are given in the abstract of individual papers.
Content
Fauna norv. Ser. B. Vol. 34, No. 1

Williassen, E.: Professor Ole A. Sæther 50 years

Aarvik, L.: Contribution to the knowledge of the Norwegian Lepidoptera II

Huru, H.: Occurrence and life cycle of Dinocras cephalotes (Curtis, 1827) (Plec. Perlidae) in North Norway

Stenseth, Ch.: Brachycaudus spp. new to the Norwegian fauna (Homoptera: Aphididae)

Jonsson, N.: Nymphal development and food consumption of Atractotomus mali (Meyer-Dür) (Hemiptera: Miridae), reared on Aphis pomi (DeGeer) and Psylla mali

Schmidberger

Williassen, E.: The first record of Thaumalea verralli Edwards (Diptera: Thaumaleidae) from Scandinavia

Greve, L.: Bibio nigriventris Haliday, 1833 (Dipt. Bibionidae) in Norway

Greve, L. & Midtgaard, F.: Megamerina dolium (Fabricius, 1805) (Dipt. Megamerinidae) in Norway

Jonassen, T.: New Norwegian Empididae (s.str.) (Dipt.)

Håland, Ø.: Influence of temperature on the egg-stage of Capnopsis schilleri (Plecoptera; Capniidae)

Solem, J.O., Steinkjer, J. & Bretten, S.: Distribution and seasonal abundance of adult stoneflies (Plecoptera) in Dovrefjell National Park, South Norway

Hofsvang, T., Solem, J.O. & Bretten, S.: Distribution and seasonal abundance of adult Tipulidae (Diptera) in Dovrefjell National Park, South Norway

Greve, L., Solem, J.O. & Bretten, S.: Distribution, abundance and phenology of adult Neuropteroidea (Orders Planipennia, Raphidioptera and Megaloptera) and Mecoptera in Dovrefjell mountains, South Norway

Mendl, H., Solem, J.O. & Bretten, S.: Distribution and seasonal abundance of adult Limoniidae (Insecta, Diptera, Nematocera) in Dovrefjell National Park, South Norway

Fjellberg, A.: Collembola from the Dovrefjell National Park, South Norway

Greve, L., Solem, J.O. & Bretten, S.: Bibionidae, Xylophagidae, Rhagionidae, Psilidae, Micropezidae, Clusiidae and Piophilidae (Diptera) from the Dovrefjell National Park, South Norway

Olsen, A.: Thrips fauna near Kongsvoll in the Dovrefjell mountains (Sø-Trøndelag County, South Norway); distribution and habitat/host plant (Thys., Insecta)

Short communications

Hofsvang, T.: Four species of Tipulidae (Diptera) new to Norway

Solem, J.O.: Anomalous male of Apatania stigmatella (Zetterstedt) (Trichoptera, Limnephilidae)

Midtgaard, F.: Agriotypus armatus Curtis, 1832 (Hymenoptera, Ichneumonidae, Agriotypinae) in Norway

Hauge, E.: Trichonecus vasconicus Denis (Araneae, Linyphiidae) new to Norway

Hauge, E.: Additions to the knowledge of the Norwegian spider fauna (Araneae)

Fjellberg, A: Tron Soo-Ryen; Museumsmann og entomolog