Fauna norvegica Ser. B
Organ for Norsk Entomologisk Forening

Appears with one volume (two issues) annually.
Utkommer med to hefter pr. år.

Editor in chief (Ansvarlig redaktør)
Dr. John O. Solem, Norwegian University of Science and Technology (NTNU), The Museum, N-7004 Trondheim.

Editorial committee (Redaksjonskomite)
Arne C. Nilssen, Department of Zoology, Tromsø Museum, N-9006 Tromsø, Arne Fjellberg, Gonveien 38, N-3145 Tjøme, and Knut Rognes, Hovørnbautene 7a, N-4040 Madla.

Abonnement 1997
Medlemmer av Norsk Entomologisk Forening (NEF) får tidsskriftet fritt tilsendt. Medlemmer av Norsk Ornitoligisk Forening (NOF) mottar tidsskriftet ved å betale kr. 90. Andre må betale kr. 120. Disse innbetalgingene sendes Stiftelsen for naturforskning og kulturminneforskning (NINA•NIKU), Tungasletta 2, N-7005 Trondheim. Ingen institusjon (som bl.a. bibliotek) kan abonnere til medlemspris hverken på Serie A, B eller C. Abonnenter vil i januar hvert år motta bankgiro for innbetaling av abonnementsavgift.

Norsk Entomologisk Forening
ser sin oppgave afremme det entomologiske studium i Norge, og danne et bindeledd mellom de interesserte. Medlemskontingen er kr. 150 (junior kr. 75) pr. år for innenlandsmedlemmer og kr. 165 (junior kr. 90) pr. år for medlemmer bosatt utenfor Norge. Henvendelse om medlemskap i NEF sendes sekretæren: Jan Stensløkk, Boks 386, N-4001 Stavanger. Members of the Norw. Om. Soc. (NOF) inside Norway receive the journal by paying NOK 90; outside Norway NOK 130; to the Foundation for Nature Research and Cultural Heritage Research (NINA•NIKU), Tungasletta 2, N-7005 Trondheim. Non-members of NEF and NOF inside Norway must pay NOK 150; outside Norway NOK 160 to NINA•NIKU. Postage is included in the subscription price. Subscribers will in January each year receive an invoice for bank payment. Institutions, libraries, etc. are not permitted to subscribe through a membership fee. Subscription and change-of-address information should be addressed to the Managing Editor.

Exchange and Advertisements
All correspondence concerning exchange and questions concerning advertising in Fauna norvegica should be sent to the Managing Editor.

Editorial policy
Fauna norvegica publishes original research dealing with the Norwegian fauna; articles, notes and reviews. Manuscripts of broad and general zoological interest are preferred, but investiga-
Population fluctuations of *Epirrita autumnata* Bkh. and *Operophtera brumata* (L.) (Lep., Geometridae) during 25 years and habitat distribution of their larvae during a mass outbreak in a subalpine birch forest in Central Norway

Olav Hogstad

Population fluctuations of *Epirrita autumnata* and *Operophtera brumata* larvae were recorded during 25 summers (1972-96) in a homogeneous oligotrophic heath birch *Betula pubescens tortuosa* forest in Budal (about 62°45'N-10°30'E), Central Norway. The larvae were collected by sweep netting when they were in instars 4 or 5. *E. autumnata* had population peaks in 1975-76, 1986 and 1996. The species had also mass outbreak in the area in 1966. *O. brumata* fluctuated in a similar way. Thus, the mass occurrence of the two species fit well into the 9-10 year cycle recorded elsewhere in northern Fennoscandia. The population densities varied from 0 to 175 larvae/100 sweeps (*E. autumnata*) and from 0 to 220 larvae/100 sweeps (*O. brumata*). During the period of population increase and crash (1973-78), the natural proportion of larvae caught in birch decreased, while those caught in the bush and field layers increased. The number of *E. autumnata* larvae/100 sweeps in birch during the peak year 1975 was highest in mid June and then levelled off to nil in mid July, while the numbers caught in dwarf birch, willows and field layer were fairly stable during June and decreased in July. Instars 1-3 occurred in birch until about 20 June, while all *E. autumnata* larvae caught in July were of instar 5. During the two first weeks in July most larvae migrated down to the forest floor to pupate.

Olav Hogstad, The Museum, NTNU, N-7004 Trondheim, Norway.
E-mail address: olav.hogstad@vm.unit.no

INTRODUCTION

The autumnal moth *Epirrita autumnata* has a circum-polar distribution, but has severe outbreaks, or mass occurrences, only in the subalpine birch region at high altitudes of Fennoscandia (Tenow 1972, Bylund 1995). The winter moth *Operophtera brumata*, that also has severe outbreaks, is found in more peripheral parts of Fennoscandia and appears also in central and north-western Europe. Such outbreaks normally imply only transient reduction in growth of birches, and pass without long-term effects on the ecosystem (Eckstein et al. 1991). However, sometimes the larvae especially of *E. autumnata*, may occur in extremely high numbers and cause conspicuous damage to birch trees with a lowering of the forest line as a consequence (Nuorteva 1963, Kallio & Lehtonen 1975). The larvae attacks on the trees of these two geometrid species are relatively synchronized and re-occur with intervals of about 9-10 years (Tenow 1972).

In the present study, the population fluctuations of *E. autumnata* and *O. brumata* were recorded during 25 summers in a heath birch *Betula pubescens ssp. tortuosa* forest in Central Norway. In six of these years it was focused on the occurrence of larvae living on birch,
dwarf birch *Betula nana*, willows *Salix* spp. and in the field layer. During these years (1973-78), the observations cover one population peak; from the population increase to its crash. In the larval peak year 1975, the phenology of the *E. autunnata* larvae was studied, i.e. the time when the different instars occurred, when the fullgrown larvae migrated down to the forest floor, and the larvae use of different tree and plant species.

The species

Epirrita autunnata is univoltine, i.e. has one generation per year. The moths fly from late August to mid-October. The female lays, on average, about 170 eggs on short shoots, under bud scales, bark flakes or lichen lobes, mainly on birch branches or twigs (Figure 1). The eggs (about 1mm long and 0.7mm wide) overwinter and hatch at budburst in the following spring. Newly hatched larvae are found at the end of May or, most frequently, in the beginning of June. The larvae lives freely on the birch leaves, and after five instars, the larvae are full-grown (20-27mm long) in the beginning of July.

The larvae has a green head, olive-green body with a whitish ventral side and three light lines along each side of the body. Spiraculae are light brown. The full-grown larvae migrates from the birch tree into the forest floor where it spins a cocoon and pupates. The pupa is redbrown, about 10mm long and 4mm wide. The pupal period lasts about 11/2-2 months, then the moths of the new generation fly and the cycle is completed (Tenow 1972). In the Budal area the main flight period is in September.

The most important host plant is birch, but it is frequently found on dwarf birch, alder *Alnus* sp og wil-

Figure 1

Life cycle of *E. autunnata*. The eggs (a), laid by the female in August-October, hibernate and hatch the following spring. The larvae (b) are full-grown in the beginning of July, then it spins a cocoon and pupates (c). After about 11/2 months, the moth has its flight period in autumn (d).
lows. In peak years larvae are also found on plant species in the field layer (Tenow 1972).

Operophthera brumata has a life cycle similar to that of *E. autumnata*. The larvae have five instars, the last being about 15-22mm long. The last instar larvae appears in two colour variants, one with a light green body and a light green head, and one with a dark green body with a nearly black head. Both have three marked white-yellow lines along each side of the body (Figure 2). The imago females have stunted wings and are unable to fly, the males are winged and fly in the autumn. *O. brumata* is far more polyphagous than *E. autumnata* and about 100 host plants are noted (Tenow 1972). In Budal is the larvae found on the same species as *E. autumnata* and starving larvae also attack several additional plant species in the field layer.

STUDY AREA

The study was made in a homogeneous oligotrophic heath birch forest in Budal (about 62°45'N-10°30'E), Central Norway. The forest area is unmanaged and situated in the transition zone between oceanic and continental climate. The mean monthly temperature and the mean monthly amount of precipitation in the area are shown in Figure 3. The growing season in the region is 140-160 days (i.e. mean temperature higher than 6 °C; Nordiska ministerrådet 1984).

The forest extends from an altitude of about 780 m a.s.l. in the bottom of the valley to the forest line at about 900 m a.s.l. The general tree height is 4-5m (Figure 4). The shrub layer is in general poorly developed, but can be rather dense in some places. On dry ground it is dominated by birch (0.5-2 m) and juniper *Juniperus communis* (0.5-1 m), in damper places by

![Figure 2](image)

Figure 2

The larvae of *O. brumata* spins one or several birch leaves to a shelter where it stays several hours of the day.

![Figure 3](image)

Figure 3

Monthly temperature normals for Budal (above) and precipitation normals for Berkåk (25 km west of Budal) in the period 1961-90 (Det Norske Meteorologiske institutt 1991a,b).
willows (especially Salix glauca and S. phylicifolia) and dwarf birch. The field layer is mostly dominated by Vaccinium myrtillus, in some places by Empetrum hermaphroditum. Other common species are Vaccinium vitis-idaea, V. uliginosum, Melampyrum pratense, Deschampsia flexuosa, D. caespitosa and Nardus stricta.

METHODS AND MATERIAL

The larvae were collected at random in a south-west slope of the valley, for 2-3 km at 800-830 m a.s.l. In the years 1972-96 the larvae were collected from branches from the lowest four metres of birch trees (i.e. nearly the whole tree height) by a sweep-net. Each year, 5-15 collections, each of 100 sweeps, were taken in the first days of July, i.e. when the larvae were in 4-5th instars (Figure 8). The width of the head capsules of both species were clearly divided into five instars: E. autumnata: 1=0.44 mm; 2=0.47-0.59 mm; 3=0.56-0.94 mm; 4=1.0-1.34 mm; 5>1.4 mm. O. brumata: 1<0.31 mm; 2=0.31-0.5 mm; 3=0.51-0.75 mm; 4=0.76-1.06 mm; 5>1.06 mm (cf. Hogstad 1996).

In 1973-78 sweep-netting were made, in addition to birch trees, also in dwarf birches, willows, junipers and in the field layer. 3-5 collections were taken every 5th day during June-July, every 10th day during May and August-October.

To find the point of time when the larvae migrated down to the forest floor to pupate, four vessels (each of 0.116 m²) filled with water were placed under birches. The vessels were inspected every 5 day from June to mid-August 1975.

RESULTS

Population fluctuations

E. autumnata had population peaks in 1966 (no sweep-netting, but see Hogstad 1968), 1975-76 and 1986 plus an extremely high density in 1996, i.e. every 10 year (Figure 5). O. brumata had peaks in 1966, 1976-77 and 1986, and also this population increased considerably in 1996. The variation of both population densities was extremely high; from 0 to a mean of 175 larvae/100 sweeps (E. autumnata) and from 0 to 220 larvae/100 sweeps (O. brumata) (solid line) and O. brumata (stippled) during 1972-96. Mean number of larvae (instars 4 and 5) per 100 sweeps in birch trees. Although not quantified, there was a marked outbreak of E. autumnata, and a lesser of O. brumata also in 1966.
sweeps (*O. brumata*). Although the two populations fluctuated synchronously (Spearman rank correlation $r_s=0.74$, $P<0.001$, $n=25$), the density of *O. brumata* was in 1976 about four times higher than that of *E. autumnata*. In 1996, the density of *E. autumnata* was very high, more than three times the density in the peaks in 1975-76 and 1986. While the latter two peak years succeeded 3-4 years of relatively even population increase of *E. autumnata*, the population density did not increase notably the two years prior to the 1996 increase. In the population peaks of the two geometrid species in 1975-76 and 1986, the larvae of *O. brumata* had a relatively high density also the year after the decrease of *E. autumnata*. The population increase as well as the decrease of the peaks of *O. brumata* were more marked than those of *E. autumnata* (cf. Figure 5). In the years when both species were recorded, the phenology of the larval stages of *E. autumnata* were 5-10 days in advance of *O. brumata*.

Distribution in different habitats 1973-78

During the period of population increase and crash, the larvae proportion in birch trees decreased (Figure 6). The reduction in use of birch for *E. autumnata* was marked from 1976, i.e. in the peak year and the following years. *E. autumnata* used the bush and field layers to a greater degree than *O. brumata*, and in 1977 the greatest proportion of *E. autumnata* was found in willows. The proportion of *O. brumata* caught in dwarf birch and willows was small in all years except for 1977 and 1978. The proportion of larvae found in the field layer was relatively high (15-25%) for both species in the years 1975 to 1977. In the peak year 1976, the *V. myrtillus* was completely defoliated in the end of June, and in some places the ground was covered with larval frass and dead larvae.

![Figure 6](image_url)

Figure 6
Distribution (%) of *E. autumnata* (above) and *O. brumata* (below) larvae per 100 sweeps in birch trees, dwarf birch, willows and in the field layer in the years 1973-78.
Distribution of *E. autumnata* in different habitats during the peak year 1975

The number of larvae caught in birch trees was highest in mid June and then levelled off to nil in mid July (Figure 7). The numbers caught in dwarf birch, willows and the field layer were fairly stable during June, and then decreased in July.

Phenology of larval stages of *E. autumnata* in the peak year 1975

The distribution of the five larval stages of *E. autumnata* in birch trees showed that instars 1-3 occurred until 20 June, while in July all larvae caught were of instar 5 (Figure 8).

The time when the larvae migrated down to the forest floor to pupate in 1975 agreed with the time for larval stage that year (Figure 9).

DISCUSSION

The mass occurrence of the moth species *E. autumnata* and *O. brumata* in Budal fits well into the 9-10 years cycle recorded elsewhere in northern Fennoscandia. The populations increase in 3-4 years, have 1-2 peak years before they crash during 2-3 years. In the Ammarnäs area, northern Sweden, severe outbreaks of *E. autumnata* were recorded in 1963-64, 1974-75 and 1985-86 (Svensson 1996), nearly synchronously with the recordings from Budal.

According to Tenow (1972), there has been seven outbreaks of *E. autumnata* and *O. brumata* in South Norway during the period 1900-68. Since the outbreaks of the two species in general are synchronous, only the outbreaks of *E. autumnata* will be mentioned. While the outbreak peak in 1905-09 was rather low, the next in 1915-22 was relatively high. During 1922-28, one of the most severe mass occurrences occurred in South Norway, and in North Finland the birch forest was killed in large areas, resulting in a permanent lowering of the forest limit (Nuorteva 1963). The next outbreak (1933-39) was weaker than normal and no forest damage was recorded. In 1942-50 severe attacks occurred in South Norway, and in Budal 1943-44 some forest areas were partially defoliated (J. Hindbjerg pers. comm.). In 1954-56 the larvae attacks were wide-spread but less severe in South Norway, while the next, that reached a peak in 1966 in Budal, was rather high (cf. Hogstad 1968), although no serious harm was recorded. Neither have the later outbreaks in 1975-76, 1986 and 1996 defoliated birch forest areas in Budal.

Thus, the damage of the different outbreaks varies considerably in intensity. Except for the mass occurrence of *E. autumnata* in 1943-44, the birch forest in Budal has not been harmed to any great extent. However, in Lierne (64°25'N), Nord-Trøndelag, large areas of birch
Figure 8
Mean number of *E. autumnata* larvae per 100 sweeps in birch trees during June-July 1975. Encircled numbers denote larvae instar number.

Figure 9
The time for migration of larvae to the forest floor to pupate. Number of *E. autumnata* larvae/m² during July 1975 fallen into four vessels placed on the ground under birch trees.

Forests were defoliated and in some areas trees died after the attack of *E. autumnata* in 1986 and 1987 (P.G. Thingstad unpubl.).

There is a marked synchrony in outbreak periods of *E. autumnata* and *O. brumata* in Fennoscandia (see Tenow 1972, present study), probably caused by the two species’ systematically close relationship (McGuffin 1958), their similar food and being parts of the same ecosystem and climatic conditions. Since the two species use the same food resource, it may be speculated about the existence of competition between the species. In areas where the two species occur in sympatry, *E. autumnata* generally appears in greater abundances than *O. brumata* in the higher parts of the valley slope.
The Budal study was made in the middle belt of the valley slope, and consequently no difference in height levels between the two species was found. The population of *E. autumnata* started to decrease in all vegetation layers in 1976. However, the mass outbreak of *E. autumnata* obviously did not harm the vegetation to an essential degree, since the *O. brumata* larvae had an additional population increase in 1976 as well as in 1977. The same pattern, although in smaller scale, was observed in 1986 and 1987. However, it is often difficult to decide whether altered population patterns of two sympatric species is a result of interspecific competition or different tolerances to changes in the habitat. The significance of interspecific competition in the population dynamics of phytophagous insects has therefore been questioned (e.g. Strong et al. 1984, Hawkins 1988, Faeth 1992).

The cyclicity in density at 9-10 year intervals of the two geometrid species in northern Fennoscandia must be created by a factor or factors that cause feedbacks with time lags of suitable duration. The heath birch responds to herbivory by creating feedbacks with a time lag of 2-4 years, i.e. changes quality in the leaves that contributes to the ten-year cyclisity (cf. Haukioja 1991). Chemical resistance of plant species against herbivorous insects is known to increase after insect attacks on foliage, a resistance that may endure for years (e.g. Haukioja 1980, 1982, Haukioja & Hanhimäki 1985). Being the most important defoliator of the mountain birch, *E. autumnata* induces long-term induction that is highest at the peak of *E. autumnata* population. Birch leaves of trees previously attacked by *E. autumnata* larvae were of lower quality as food for the larvae than intact leaves (Haukioja & Hanhimäki 1985, Hanhimäki & Senn 1992). Thus, populations of *E. autumnata* within outbreak ranges have smaller larvae (Hogstad 1996), pupates in smaller size, have a reduced viability and have lower potential rate of increase than populations outside outbreak ranges. Induced long-term resistance may therefore represent one of the most important factors in the population dynamics of *E. autumnata*. As this resistance lasts for at least four years (Haukioja 1980), it provides an explanation why an outbreak does not follow in several consecutive years.

However, also parasitism may be an important factor in explaining population fluctuations in *E. autumnata* (Bylund 1995). During six years within the outbreak range of *E. autumnata* in northern Fennoscandia, six phenologically early species of parasitoids (all hymenopterans) were found, while only three species were found outside the outbreak range (Ruohomäki 1994). Furthermore, the impact of larval parasitoids seems to increase with a time lag, an effect that is consistent with the cyclic population fluctuations of *E. autumnata* (cf. Ruohomäki 1994). As the parasitism of *E. autumnata* tend to be highest just after peak densities of the larvae, parasitism and chemical resistance may be difficult to separate (e.g. Haukioja & Hanhimäki 1985).

Although the temperature probably has none or a minor effect on the cyclisity of the outbreaks, the local climate in winter (cf. Tenow 1975, Niemelä 1979, Tenow & Nilssen 1990) as well as in summer (cf. Tenow 1975, Niemelä 1980, Hanhimäki & Senn 1992) may have a modifying effect on the outbreaks. Like *E. autumnata*, *O. brumata* overwinters in the egg stage on the trees. Since the eggs of *O. brumata* freeze at a higher temperature than those of *E. autumnata* (MacPhee 1967, Nilssen & Tenow 1990), the relatively low density recorded of the latter species in Budal 1996 may have been caused by several extremely cold periods in the area the winter 1995-96. The variation in the reproductive capacity of *E. autumnata* seem to explain the cyclisity of the outbreaks (cf. Ruohomäki & Haukioja 1992).

So far, the most likely explanation for the cyclisity of *E. autumnata* and *O. brumata* is the induced response hypothesis, i.e. changes in the quality of leaves as food caused by the feeding by the larvae (cf. Haukioja 1991).

In 1997 the population density of *E. autumnata* decreased to a mean of 16 larvae/100 sweeps, while *O. brumata* (mostly the dark green variant) increased to 340 larvae/100 sweeps. The mass occurrence of the latter resulted in several partially defoliated areas below 830 m a.s.l.
ACKNOWLEDGEMENTS

I wish to thank the following persons for field assistance: Jostein Engdal in 1975-77, Sissel Solberg and Gunn Paulsen Thingstad in 1976 and Ola Tovmo in 1977. Thanks also to Olle Tenow for comments on the manuscript. Financial support was provided by the Nansen Foundation and the University of Trondheim (Zoological Department and Zoological Museum).

SAMMENDRAG

Populasjonsfluktuasjoner hos fjellbjørkemåler Epirrita autumnata og liten frostmåler Operoph- tera brumata gjennom 25 år og deres habitatfordeling ved masseforekomst i fjellbjørkeskog i Budal, Sør-Trøndelag

I årene 1972-96 ble det foretatt fangst av fjellbjørkemåler (Figure 1) og liten frostmåler (Figure 2) i heibjørkeskog i Budal, Sør-Trøndelag. Undersøkelsesområdet ligger i overgangssonen mellom oseanisk og kontinentalt klima (Figure 3). Skogen består av fjellbjørk Betula pubescens ssp. tortuosa med trehøyde 4-5 m (Figure 4). Insektfangstene ble foretatt med slaghav, 5-15 serier a 100 havslag i bjørk i de første dagene i juli, dvs da larvene var i 4. eller 5. larvestadium. Fangstene varierte fra 0 til 175 larver/100 havslag for fjellbjørkemåler og fra 0 til 220 larver/100 havslag for liten frostmåler (Figure 5). Begge målerartene hadde masseforekomst i 1975-76, 1986 og 1996. Også i 1966 var det masseforekomst av artene i området (ikke kvantifisert). Disse regelmessige masseforekomstene passer godt inn i den 9-10 årlige syklusen som er funnet i Nord-Fennoscandia.

I 1975, da tetthen av fjellbjørkemåler var høyest, var andelen fjellbjørkemåler i bjørk størst i midten av juni. Deretter avtok bestanden til null midt i juli. Fangsten i dvergbjørk vier og i feltsjiktet var imidlertid relativt stabil i juni før de avtok i juli (Figure 7). Fjellbjørkemålerne var i larvestadiene 1-3 intill 20. juli, i juli var alle i stadium 5 (Figure 8). I løpet av de to første ukene i juli hadde nær alle larvene sluppet seg ned på bakken for å forpuppe seg (Figure 9).

Populasjonsfluktuasjonen hos de to målerartene er synkron, og muligheten for konkurranse mellom dem er diskutert. Årsaken til den sykliske fluktuasjonen hos målerartene er også diskutert, med forandring i bjørkebladenes kvalitet, forårsaket av de bladspisende larve- ne, som den mest trolige forklaring.

REFERENCES

Haukioja, E. 1982. Inducible defences of white birch to a geometrid defoliator Epirrita autumnata. - Pp. 199-203 in
Hogstad: Fluctuations of *Epirrita* and *Operophtera*

Habitat distribution of riparian species of Bembidiini (Col., Carabidae) in South and Central Norway

Johan Andersen

The macro- and microhabitat distribution of riparian Bembidiini species in South and Central Norway was studied by means of quadrat sampling and time catch. Many species are habitat specialists and show a stable choice through their distribution ranges, although some exceptions exist (Bembidion bipunctatum, B. femoratum). Although the lithophilous species (confined to gravelly/stony ground) may seem to form a uniform group, they are well segregated by differences in moisture, substratum, exposure and macrohabitat requirements. All species pairs showed low microhabitat overlap. The only exception was Asaphidion pallipes-Bembidion quadrimaculatum, but these species are well separated in other resource dimensions. The proximate and ultimate causes for the micro-macrohabitat distribution of the species are discussed. A connection between habitat choice and geographical distribution is also discussed.

Johan Andersen, Institute of Biology and Geology, University of Tromsø, N-9037 Tromsø, Norway.

INTRODUCTION

A large number of species of Bembidion occur in riverine habitats in the holarctic region (Netolitzky 1942, 1943, Lindroth 1963, Freude 1976). According to Lindroth (1949, 1963) and Thiele (1977) Bembidion is an example of a genus in which spatial intrageneric isolation is often absent, indicating that interspecific competition is of little importance in determining the spatial distribution of the species. This conclusion, however, was based on rather incomplete knowledge of the micro- and macrohabitat selection of the species (cfr. Andersen 1983a). Andersen (1970) studied the habitat distribution of the riparian Bembidiini species at some localities in Central and Northern Norway, but the environment was not sufficiently divided into macro- and microhabitats. More recently, the macro- and microhabitat distribution and the spatial overlap of the species in Northern Norway were examined in detail by Andersen (1983a, 1988). The present paper is a corresponding study of the macro- and microhabitat distribution and the spatial overlap of the species of the tribe at many localities in South and Central Norway.

STUDY AREA, MATERIAL AND METHODS

The study comprises more than 100 localities in South and Central Norway. In addition to the localities given in Andersen & Hansen (1993) the following localities were investigated: 150. Oppdal (8 km N of Kongsvoll, at the river Driva; 151. Melhus and Midtre Gauldal, between Flå and Folsstad. 7 localities at the river gaula; 152. Hurdal. Between Skomtefleten and Skrukkeli, at the river Skandøla. The material has been collected in May-September in 1970-1995 and comprises >5 800 individuals.

The methods used are the same as those described in Andersen (1983a). Most of the investigations are based on timed handcollecting (time-catch).

According to Greenstone (1979) there is a significant correlation between catch per unit effort (time catch) and absolute population indices. The author emphasizes, however, that it would be prudent to restrict the use of this method to situations in which most are held constant. This requirement is often not fulfilled on river
banks. However, with the time-catch method it has been observed that the size of the area investigated per unit time changes with the microhabitat in a certain way; for example, it increases progressively from places with dense vegetation to places without vegetation (Andersen 1983 a). If the yield per unit time in dense vegetation is as high as or higher than in sparse vegetation, it is likely that the species is most abundant in the dense vegetation. It is therefore often possible to compare the relative abundance of a species in different microhabitats by the time-catch method. The relationships between the microhabitats are as follows (Andersen 1983a, p. 133): area of 4d, 4g, 7 > area of 6 > area of 3a; area of 3a < area of 4b, 4c < area of 4d, 4g, 7; area of 2b, 3b < area of 4d, 4g, 7. With the same degree of coverage (density and size of stones and gravel, density of litter or vegetation) investigated areas per unit time are approximately equal (see also Greenstone 1979), e.g. area of 3a = area of 2a, 4a; area of 6a I = area of 6a II-III. Only those microhabitats that are present in the same macrohabitats and localities, and sampled on the same or two consecutive days during similar weather conditions can be compared for a species (Greenstone 1979).

At the river Gaula (locality 39 in Andersen & Hanssen (1991)) quantitative sampling was made in August 1973 and 1994. The sampling area was 0.125 m², except in microhabitat 4d where it was 0.72 (0.8 x 0.9) m². Microhabitat overlap between species was calculated by means of Pianka’s formula (1975). For further information about sampling procedures, weather conditions and statistics see Andersen (1983a, 1988) and Andersen & Hanssen (1993).

DESCRIPTION OF MACROHABITATS AND MICROHABITATS

The macrohabitat categories were as follows: a) banks of large rivers; b) banks of smaller rivers; c) banks of very small rivers and brooks; d) lake shores; e) sea shores. Large rivers have a total length of >65 km and a precipitation area of more than 1000 km². Gudbrandsdalslågen (localities 132-134), Glomma (localities 143-149), Gaula (localities 39-40, 151), Orkla (locality 27) and Verdalselva (localities 15-17) constitute this group. They have broad banks which are developed in the same manner as described by Andersen (1970). The smaller rivers have a length between 10-60 km and usually with a drainage area <1000 km² whereas category c) have a total length of <10 km. The largest tributaries of the large rivers are included in category b). The rivers of category a) and b) are rather slow-flowing and usually with well developed sandy and/or silty flats. Contrary to this the smallest rivers and brooks flow rapidly. Silty and sandy flats are absent or poorly developed. The brooks are the smallest lotic waters with gravel/stone banks.

The lake shores are composed of gravel/stones or sand. Sea-shores (estuaries) have only been investigated in a few places. The substratum was made up of gravel/stones or silt. A certain microhabitat frequently occurs in more than one macrohabitat.

The microhabitats are shown and described in Figure 1 and in Table 1. The microhabitat 6a was subdivided according to elevation above the water and as to moisture content of the substratum underlying the gravel/stones (Andersen 1983 a) in the following way:

I: Zones closest to the water. Substratum saturated with water.
Table 1. Characteristics of the microhabitats. Further subdivisions of microhabitat 6a are mentioned in the text. For more details of the habitats, see Andersen (1970a).

<table>
<thead>
<tr>
<th>Microhabitat No.</th>
<th>Place of occurrence</th>
<th>Elevation above water</th>
<th>Exposure</th>
<th>Vegetation coverage</th>
<th>Substratum type below surface</th>
<th>Water % (dry weight)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>River banks</td>
<td>Elevated</td>
<td>Open</td>
<td>2-5</td>
<td>Silt</td>
<td>5-15</td>
<td>Partly without connection with water body</td>
</tr>
<tr>
<td>1d</td>
<td>River banks</td>
<td>Elevated</td>
<td>Open</td>
<td>0-1</td>
<td>Gravel stones</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>Medium - large rivers</td>
<td>Medium elevation</td>
<td>Shady under bushes</td>
<td>4-5</td>
<td>Silt</td>
<td>15-30</td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td></td>
<td></td>
<td></td>
<td>1-2</td>
<td></td>
<td></td>
<td>Dense leaf litter</td>
</tr>
<tr>
<td>3a</td>
<td></td>
<td></td>
<td></td>
<td>4-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td></td>
<td></td>
<td>1-3</td>
<td></td>
<td>15-25</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td></td>
<td>Open</td>
<td>1</td>
<td></td>
<td>15-30</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td>Elevated</td>
<td></td>
<td>2-4</td>
<td>Fine sand or silt</td>
<td>10</td>
<td>Vegetation xerophilous (e.g. Achillea millefolium, a rotundifolia, Lotus corniculatus)</td>
</tr>
<tr>
<td>4c</td>
<td></td>
<td>Low-lying</td>
<td>Often somewhat shaded</td>
<td>3</td>
<td>Silt</td>
<td>330</td>
<td>Vegetation hygrophilous (e.g. Agrostis stolonifera, Equisetum fluviatile)</td>
</tr>
<tr>
<td>4d</td>
<td></td>
<td>Medium elevation</td>
<td>Open</td>
<td>1</td>
<td></td>
<td>10-25</td>
<td></td>
</tr>
<tr>
<td>4g</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Estuaries</td>
<td>Close to water</td>
<td></td>
<td>3-5</td>
<td></td>
<td>330</td>
<td>Partly submerged by tide. Vegetation halophilous (e.g. Juncus gerardi, Cochlearia officinalis, Puccinella sp.).</td>
</tr>
<tr>
<td>6a</td>
<td>All types of fresh waters</td>
<td>Varying</td>
<td></td>
<td>0-(1)</td>
<td>Stones, gravel</td>
<td>Varying</td>
<td>Varying</td>
</tr>
<tr>
<td>6b**</td>
<td>Estuaries, seashores</td>
<td>±Elevated</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>Medium - large rivers</td>
<td>±Elevated</td>
<td></td>
<td>0</td>
<td>Medium-fine sand</td>
<td>Medium-fine sand</td>
<td><1</td>
</tr>
<tr>
<td>7b-c</td>
<td></td>
<td>±Low-lying</td>
<td></td>
<td>0</td>
<td></td>
<td>>1</td>
<td>Sand ± moist.</td>
</tr>
</tbody>
</table>

* May form a thin layer above coarser material
** Erroneously given as 6a in Andersen (1970a, p. 29, line 12 from above.
*** Hult-Sernander's scale
II: Zones higher up. Moisture content 1.6-3.0% (heterogeneous substratum); 15.0-25.0% (silty substratum).

III: Rather elevated zones. Moisture content: 0.7-1.0% (heterogeneous); 2.0-5.0% (silt).

Microhabitat 6a was further subdivided according to the type of substratum underlying the surface layer and according to exposure (shady, open).

RESULTS

Micro- and macrohabitat distribution of the species

The micro- and macrohabitat occurrence of the species are as follows:

Asaphidion pallipes (Duftschmid) occurs regularly on ruderal places and in sand and clay pits far from water in Gudbrandsdalen and in Sør-Trøndelag county (see also Andersen 1970). In quadrat samples the species was found in microhabitats 2a, 3a and 4b at the river Gaula (Table 2). The difference in abundance between these microhabitats was not statistically significant. However, timecatch results from Gaula (loc. 39, 151) as well as earlier investigations indicate that 4b, i.e. elevated, rather dry, silty sites with some vegetation, is the preferred microhabitat (Figure 3, Andersen 1970, 1983a).

Bembidion argenteolum Ahrens. Except for the occurrence at the lake Selbusjøen (loc. 46) this species is confined to the banks of large rivers in Norway. Figure 2 confirms the psammophilous nature of the species. *B. argenteolum* shows a preference to medium-sized or rather fine sand (Andersen 1970, 1978). In the breeding phase *B. argenteolum* seems to occur about equally abundantly on dry and weakly moistened sand during sunny weather (Andersen 1970) whereas it seems to prefer dry sites during cloudy weather (Figure 2). Figure 2 indicates that the new generation of the species prefers dry sand even during sunny weather prior to hibernation (locality 133, August). This was also confirmed by the following observations (made without time notion): During sunny weather in August and early September more than 150 specimens were collected, almost without exception, on dry, loose sand rather far from water. Such specimens were usually found conce-

| Table 2. Abundance (number per 0.125 m²) of *Bembidiiini* species in different microhabitats by the river Gaula (localities 39, 40, 150) in August 1973. The sampling area was 0.125 m², except in 4 d where it was 0.72 m². The numerals in italics are significantly (p <0.05, Mann-Whitney U-test) higher than those in the microhabitats marked with asterics. Numerals for 4d could not be tested against those from the other microhabitats. |
|-----------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Species | 1d | 2a,3a | 3b | 4a | 4b | 4c | 4d | 6a silt |
| | | | | | | | | |
| *Bembidion femoratum* | 1.30 | 0* | 0* | 0* | 0.05* | 0* | 0.04 | 0* | 0.56 |
| *B. quadrimalatum* | 0.43 | 0* | 0* | 0* | 1.10 | 0* | 0 | 0* | 0* |
| *B. schuppelii* | 0* | 1.22 | 0.06* | 0* | 0* | 0* | 0 | 0* | 0* |
| *B. lunatum* | 0* | 0.06* | 0.94 | 1.72 | 0.01* | 0.08 | 0 | 0* | 0* |
| *Asaphidion pallipes*| 0* | 0.17 | 0 | 0 | 0.33 | 0 | 0 | 0 | 0 |
| *Bembidion semipunctatum* | 0* | 0* | 0.22 | 0* | 0* | 1.24 | 0 | 0* | 0* |
| *B. dentellum* | 0 | 0 | 0 | 0 | 0 | 0.20 | 0 | 0 | 0 |
| *B. bruxellense* | 0 | 0 | 0 | 0 | 0 | 0.12 | 0 | 0 | 0 |
| *B. litorale* | 0 | 0 | 0 | 0 | 0 | 0.29 | 0 | 0 | 0 |
| *B. prasinum* | 0* | 0* | 0* | 0* | 0* | 0 | 0 | 0.96 | 0* |
| *B. petrosum* | 0 | 0 | 0 | 0 | 0 | 0.04 | 0 | 0 | 0.36 |
| Number of samples | 23 | 18 | 18 | 18 | 21 | 23 | 9 | 25 | 23 |
Figure 2
Microhabitat distribution of three Bembidion species according to time catches (catches per 10 min; Y-axis). Note that the area investigated per unit time changes with the microhabitat. Only values represented by similar symbols are comparable. Numerals above the symbols give the time spent at the microhabitat. For description of microhabitats see Table 1 and Figure 1.

aled (under small pieces of bark or wood etc.) whereas breeding specimens largely were found running about or flying in the sun or dug down during cloudy weather (Andersen 1970, 1978).

B. velox (L.) occurs frequently both on river banks and on lake shores. In its ecological requirements the species resembles B. argenteolum with which it frequently occurs, but it has significantly higher requirements to moisture (Figure 2, data from overcast weather: $X^2 = 27.1, p<0.001$).

B. lapponicum Zetterstedt has only been found at the banks of large rivers. All the specimens collected by the present investigation were found on dry or moist, sandy or silty sites without vegetation which is in full accordance with earlier results (Andersen 1970, 1983a). Consequently, the species seems to be less selective with regard to substratum than the closely related B. velox.

B. litorale (Olivier) is confined to the banks of medium-sized and large rivers in Norway. In Denmark and Sweden it has recently been found in secondary habitats (clay or sand pits) (Lindroth 1985, Roger Pettersson, pers comm.). At the banks of the river Gaula (loc. 39), Orkla (loc. 27) and Verdalselva (loc. 16) the species was found exclusively in silty sites, but at the river Leira (loc. 113) it occurred on clayish ground. The present investigation (Table 2 and Figure 3) as well as earlier investigations (Andersen 1970) show that sparsely vegetated or barren sites with a varying degree of moisture are preferred. B. litorale is rather flexible with regard to substratum choice (present investigation, Andersen 1970, 1978), but the species is obviously very sensitive to vegetational successions (Andersen & Hanssen 1993).
B. lampros (Herbst) has usually not been found on the river bank proper. By time-catch it was found abundantly in eu littoral, usually culture-favoured sites (microhabitat 1c) not very far from rivers (Figure 3).

B. bipunctatum (L.). Contrary to in Northern Norway this species seems to be limited to the vicinity of water bodies in South and Central Norway. However, it has been found at all types of waters, fresh as well as saline. The species occurs regularly in several microhabitats (Figure 4), but it often has a restricted microhabitat distribution within limited areas. At most of the large rivers in Sør-Trøndelag and Nord-Trøndelag counties it occurs only in saline habitats at estuaries (microhabitat 5 and 6b). At the river Rauma (loc. 54-58), however, B. bipunctatum also occurred in microhabitats 2a and 4c on the real river bank.

B. dentellum (Thunberg) was found at the large rivers as well as on lake shores, often at the fringes of rather eutrophic waters. It was found exclusively in microhabitats 2b, 3b and 4c (Table 2 and Figure 3) on river banks, which is in complete agreement with earlier results (Andersen 1970). Thus, the species prefers very wet, silty or clayish soil with a somewhat developed vegetation or with a sparse one, but in the latter case in a shady position (vide also Lindroth 1985).

B. semipunctatum (Donovan) occurs exclusively on river banks in Fennoscandia. Specimens found outside such habitats are obviously accidental visitors without ability to establish permanent populations (Lindroth 1985). At the river Leira (loc. 113) the species occurred on clayish ground, whereas it otherwise only was present in silty spots. Time-catch gave higher yields in microhabitat 3b and 4c than in 4d (Figure 3), indicating that the first two are the preferred ones (see Material and methods). Quadrat samples indicate that the species is more abundant in 4c than in 3b, but the difference was not statistically significant (Table 2). These results are in accordance with earlier ones (Andersen 1970) and it is concluded that the preferred microhabitats of the species are moist, silty (sometimes clayish) sites with moderately developed vegetation cover in open position or slightly shaded sites with sparse plant cover.

B. obliquum Sturm has no close association with river banks although it may be abundant at such places, e.g. at Verdalselva (loc. 15) and Orkla (loc. 27). It is often abundant at the borders of very wet, densely vegetated lake shores. All the time catch material is from Verdalselva. At this river the method gave higher yields in microhabitat 4d than in 4c (Figure 3), but the method does not allow for the conclusion that it is more abundant in sparsely vegetated sites than in more densely vegetated ones (see Material and methods). According to Lindroth (1945) B. obliquum occurs in very wet, bare spots surrounded by dense vegetation.

B. schuppelii Dejean has been found exclusively on river banks in South and Central Norway. The present results (Table 2 and Figure 3) as well as earlier ones (Andersen 1970, 1983 a) show that B. schuppelii prefers moist silty sites with rather dense vegetation, often in shady position (microhabitats 2a, 3a and 4a).

B. quadriraculatum (L.) is not confined to river banks. It is common on arable land, at roadsides, in sand pits etc. and in microhabitat 1c closer to the rivers. On the river bank proper mostly found in microhabitat 4b and 4d, i.e. on sparsely vegetated, or barren, medium to little moistened, silty sites (Table 2 and Figure 3, Andersen 1970).

B. difficile (Motschulsky) has been found on the banks of small as well as large rivers in South and Central Norway. In Sør-Trøndelag and Nord-Trøndelag counties, however, it is absent or accidental at the borders of the large rivers. The species was found in shady positions, either on moist silty ground with a litter (withered foliage) layer and some vegetation (microhabitat 2b) or on gravelly-stony ground with an underlying layer of moist silt (Figure 4). The microhabitat requirements of B. difficile are the same in Northern Norway (Andersen 1983a).

B. fellmanni Mannerheim. Most records of this species in South and Central Norway are from the subalpine or alpine regions (Andersen 1960, Fjellberg 1972, Fridén 1984) but by the present investigation it was found abundantly in the lowland at the river Rauma (loc. 56). It occurred under large stones with a moist silty substratum in shady position. In other localities investigated during the present study, only single specimens were found.
Figure 3
Microhabitat distribution of Bembidiini species according to time catches. For further explanation, see Figure 2.
Andersen: Habitat distribution of riparian species

Figure 4
Microhabitat distribution of four *Bembidion* species according to time catches. het: heterogeneous substratum underneath gravel/stones; exp: exposed; sh: shady. For further explanation, see Figure 2.

Table 3. Abundance (number per 0.125 m²) of *Bembidion* species in some microhabitats by the river Gaula (localities 39, 40, 150) in August 1994. For further explanation see Table 2.

<table>
<thead>
<tr>
<th>Species</th>
<th>Microhabitats</th>
<th>6a het</th>
<th>6b</th>
<th>6a silt</th>
<th>6a sand exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Bembidion prasinum</td>
<td>1.80</td>
<td>0.10</td>
<td><0.1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. saxatile</td>
<td>0.10</td>
<td>0</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. petrosum</td>
<td>0.40</td>
<td>0.80</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. virens</td>
<td>0</td>
<td>0*</td>
<td>0.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of samples 10 10 22

B. virens Gyllenhal occurs regularly at the fringes of all types of freshwater (Figure 5). It also occurs frequently at the sea (Table 3, Andersen 1983a). The species is lithophilous, i.e. confined to gravelly/stony sites. Compared with *B. prasinum* (Duftschmid) and *B. saxatile* Gyllenhal, *B. virens* is less abundant at places with an underlying layer of silt and especially clay (Figure 6, Tables 4 and 5). The catch per unit effort was higher in 6a II than in 6a I (Figure 6). Since the catch per unit effort is about the same in these two zones it may be concluded that the species often is most abundant in zones at some distance from the water. The microhabitat requirements are the same in Northern Norway (Andersen 1983a).

B. prasinum (Duftschmid) prefers banks of rivers (Figure 5). It is clearly lithophilous, but the underlying type of substratum is less important (Figure 6, Table
B. saxatile B. virens

The occurrence of lithophilous *Bembidion* species in various macrohabitats. The numerals in brackets are the total number of localities where the macrohabitat is represented. B: edges of brooks and very small rivers; SR: banks of smaller rivers; LR: banks of large rivers; L: lake shores.

5). *B. prasinum* has a clear preference to the zones closest to water (Table 2 and 3, Figure 6). The species has similar microhabitat requirements in Northern Norway (Andersen 1983a).

B. hastii Sahlberg is only present in or near mountains in South and Central Norway, but the species is probably able to establish populations in the coniferous zone at a few places. The species is lithophilous (Andersen 1970, 1983 a) and in full accordance with this the few specimens collected in South Norway were found on gravelly/stony ground.

B. tibiale (Duftschmid). This species which has a very limited distribution in Northern Europe (Andersen & Hanssen 1993), occurs exclusively at the fringes of fast-flowing brooks (Figure 5). The catch per unit effort was higher in shady sites than in open ones (Figure 6). Since the catches per unit effort is about the same in open and shady position, it may be concluded that the species is most abundant in the latter microhabitat. The species is most abundant in the zone closest to the river (Figure 6, vide discussion of microhabitat preference of *B. virens* above). In Central Europe the ecological requirements of the species is almost identical (Freude et al. 1976, Koch 1989, Andersen unpublished data).

B. nitidulum (Marsham) has been found at clayish slopes above brooks and small rivers, but also away from open water on various types of culture-influenced...
Figure 6
Microhabitat distribution of four lithophilous Bembidion species according to time catches. For further explanation, see Figure 2 and 4.

B. prasinum

B. saxatile

B. virens

B. tibiale

B. femoratum Sturm occurs both on river banks, lake shores and in various types of culture-influenced habitats. Both quadrat sampling and time catch show that the species is most abundant in microhabitat 1d, i.e. in dry, gravelly/stony sites with an underlying layer of silt at some distance from the river, but it is also quite abundant in rather dry, gravelly/stony sites on the real river bank (Figure 4, Table 2). Earlier (Andersen 1970) gravelly/stony and silty sites were found to be about equally preferred, but microhabitat 1d was not investigated in that work. In South and Central Norway the species may, therefore, be most abundant in more or less dry, gravelly/stony sites just like in Northern Nor-
Table 4. Number of specimens of *Bembidion virens* and *B. saxatile* collected in various types of microhabitats. Hand collecting with or without time notion. Both species are not necessarily found within the same locality but distance between occurrences of the two species has never been more than 10 km.

I: Schist stones/gravel; silt/clay or heterogeneous substratum underneath.
II: Round stones/gravel; silt/clay underneath, exposed.
III: As the previous, but shady.
IV: Round gravel/stones with coarse sand and gravel underneath, exposed.
V: As the previous, but fine sand underneath.

<table>
<thead>
<tr>
<th>Microhabitat type</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B. virens</td>
</tr>
<tr>
<td>I</td>
<td>0 3 1 235 64</td>
</tr>
<tr>
<td>II</td>
<td>220 191 78 151 8</td>
</tr>
<tr>
<td>III</td>
<td>4 13 2 20* 3</td>
</tr>
</tbody>
</table>

Number of localities

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>13</td>
<td>2</td>
<td>20*</td>
<td>3</td>
</tr>
</tbody>
</table>

* Dominance ratio between the two species varied with locality.

way (Andersen 1983a). I do not regard *B. femoratum* as really lithophilous, however, since it is able to establish populations at places without a gravelly/stony cover (personal observation in Denmark and on the island Gotland in South Sweden).

B. bruxellense Wesmael is very euryoecious and has been found at fringes of all types of waters except at sea. It occurs also on culture-influenced ground far from open water. The species is present in many microhabitats on river banks such as silty places with a varying degree of plant cover and it may also be abundant in gravelly/stony spots, usually in rather elevated parts (Figure 4).

B. petrosum siebkei Sparre Schneider prefers large rivers (Figure 5). According to time catch the species prefers gravelly/stony spots (Figure 2). Although *B. petrosum* was found in microhabitat 4d in quadrat samples (Table 2) it is no doubt lithophilous. The species has a preference for silt underlying/gravel stones (cfr. also Andersen 1978) and is often abundant in zones at some distance from the river (Table 2, 3, Andersen 1970, 1983a).

B. saxatile Gyllenhal occurs at all types of freshwater (Figure 5) as well as at the sea. The species is clearly lithophilous, but it is more euryoecious than any other beetle species of that ecological group (Tables 4, 5, Figure 6). Thus it is the only species present at places with gravel/stones of schist (Table 4). Furthermore, it is completely independent of the type of underlying substratum and occurs even in places with clay (Table 4, 5, Figure 6, Andersen 1983a). Contrary to *B. virens*, *B. prasinum* and *B. petrosum* the species occurs abundantly also in shady positions and is able to colonize secondary, human-made habitats such as gravel pits.

Table 5. Distribution of species pairs of four lithophilous *Bembidion* species in relation to differences in microhabitat variables. Data are based on handcollecting both with or without time notion. Different vertical groups partly contain the same material. *sax: B. saxatile; vir: B. virens; pra: B. prasinum; tib: B. tibiale; A: exposed; B: shady; sa: sand under gravel/stones; si: silt or clay under gravel/stones; c: coarse; f: finer; I: close to the river; II: more distantly (elevated) from the river; n: number of samples; p: number of localities with significant differences (p<0.05) in distribution of species (χ^2-tests).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>sax</td>
<td>51</td>
<td>81</td>
<td>11</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>vir</td>
<td>84</td>
<td>0</td>
<td>26</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>pra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>142</td>
</tr>
<tr>
<td>tib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>p</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

21
(personal observation on Gotland in S Sweden; cfr. also Lindroth 1945).

Habitat overlap of species

The microhabitat overlap of the species pairs at the river Gaula was generally very low (Table 6), with a mean of a < 0.07. The only species pair with a high overlap was *Asaphidion pallipes-Bembidion quadrimationculatum*.

DISCUSSION

The present investigation as well as information given by Lindroth (1963, 1974), Andersen (1970, 1983a), Freude (1976) and Koch (1989) indicate that many Bembidini species are macro- and/or microhabitat specialists and have the same main choices within their distribution ranges. Thus, the lithophilous species *B. virens, B. prasinum, B. hastii, B. tibiale* and *B. saxatile* are confined to gravelly/stony habitats throughout their geographical ranges. Furthermore, the zones closest to the rivers are occupied by *B. prasinum*, those higher up by *B. virens* in South-Central as well as in Northern Norway. Several species that were found to be confined to fine-grained substratum by the present investigation (e.g. *B. argenteolum, B. litorale, B. dentellum, B. lunate, B. semipunctatum, B. nitidulum* and *B. schuppelii*) also seem to choose the same main habitats in other parts of their distribution ranges (cfr. Lindroth 1963, 1974, Freude 1976, Koch 1989). There are some obvious exceptions, however. In Northern Norway *B. bipunctatum* is a common species in eulitoral, culture influenced sites, e.g. in vaste places, ruderal sites (Andersen 1970, unpublished data) whereas it is strictly riparian in South and Central Norway. *B. femoratum* is a common species in litoral, as well as eulitoral habitats in South and Central Norway, whereas it seems to be strictly eulitoral in Northern Norway. Such habitat shifts are most likely attributable to differences in microclimate due to differences in the angle of incidence of sun-rays (Andersen 1993).

It is now well documented that the proximate causes for the habitat segregation of the riparian *Bembidion* species are different responses and tolerances to abiotic factors such as temperature, relative humidity, light response, substratum and type of coverage (Andersen 1978, 1985a, b, 1986, 1988, Sowig 1986). Abiotic factors may also be responsible for differences in macrohabitat selection (Andersen 1983a). The preference of *B. petrosum*, for banks of large rivers (Andersen 1983a, present paper) may be explained by its demands for a silty substratum underlying gravel/stones since brooks and the smallest rivers rarely have that substratum. The reason why *B. prasinum* seldom occurs around brooks and the smallest rivers may be that this hygrophilous species does not tolerate splashing of water (Andersen

Table 6. Microhabitat overlap of species pairs of Asaphidion (A.) and Bembidion (B.) at the river Gaula. B. dentellum and B. saxatile are omitted due to low abundance. *:* material from 1973, **:* material from 1994.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bembidion femoratum</td>
<td>(a)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. schuppelii</td>
<td>(b)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. lunate</td>
<td>(c)*</td>
<td><0.01</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. quadrimationc.</td>
<td>(d)*</td>
<td>0.37</td>
<td>0</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. pallipes</td>
<td>(e)*</td>
<td>0.04</td>
<td>0</td>
<td>0.02</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. semipunctatum</td>
<td>(f)*</td>
<td>0</td>
<td><0.01</td>
<td>0.13</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. litorale</td>
<td>(g)*</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. prasinum</td>
<td>(h)*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. petrosum</td>
<td>(i)*</td>
<td>0.40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. prasinum</td>
<td>(h)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. petrosum</td>
<td>(j)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. virens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
</tr>
</tbody>
</table>
According to Andersen (1983a), *B. prasinum* is usually absent at the estuaries of rivers and at sea shores whereas *B. virens* may be abundant at such places (e.g. Table 3). This difference between the two species may be due to differences in their moisture requirements. *B. prasinum* keeps close to rivers (Table 2, 3, Figure 6) and due to the effect of tides, estuaries and sea-shores may be too unstable habitats for this species. *B. virens*, on the contrary, dwells in zones further from the water (Figure 6) and may, therefore, largely avoid the effects of low and high tide.

Contrary to the other lithophilous species, *B. saxatile* and *B. tibiale* are commonly present in shady habitats. At least for *B. saxatile* this is in accordance with the fact that it showed a weaker response towards directed light in experiments than the other lithophilous species that have been tested (Andersen 1989).

there are, however, still unsolved questions regarding the mechanisms behind the microhabitat selection of species. *B. saxatile* is the only lithophilous species frequently present on banks and shores with stones or gravel of schist. Whether this difference between species is due to a refined difference in response to contact stimuli or some other factor is unknown. Several species have a habitat shift in connection with hibernation (Andersen 1968, unpublished data). The mechanism behind this shift has not been examined.

Quadrat samples conducted at the banks of river Gaula indicated that nearly all the species were separated by microhabitat. The only exception was the pair *A. pallipes*- *B. quadriramaculatum*. These two species are, however, separated both by activity and life cycle. Thus *B. quadriramaculatum* shows much more diurnal activity than *A. pallipes* and the first species is an imaginal hibernator, whereas *A. pallipes* hibernates both as larva and adult (Andersen 1970). The two species therefore show apparent resource partitioning.

The following six species occur at the banks of Gaula but they were not found in quadrat samples: *B. bipunctatum*, *B. nitidulum*, *B. tetracolum*, *B. lampros*, *B. argenteolum* and *B. lapponicum* (Andersen 1970). According to Andersen (1970) they are distributed as follows: *B. bipunctatum* occurs exclusively in microhabitats 5 and 6b. In the first mentioned microhabitat it is the only species present whereas it occurs together with *B. virens* in 6b. *B. nitidulum* occurs exclusively and as the only species on clayish slopes far from the river. *B. tetracolum* seems to be an irregular visitor at the banks of Gaula. *B. lampros* occurs only in microhabitat 1c, i.e. in eulitoral sections. The only other species occurring in the same microhabitat is *B. quadriramaculatum*. The latter species is comparatively common also on the river bank proper. *B. lapponicum* and *B. argenteolum* show less obvious spatial segregation, although the first one is found exclusively in sandy sites, whereas the latter also occurs in silty sites. The two species show no apparent differences in life cycle and activity, both being imaginal hibernators with diurnal activity (Andersen 1970). There is, however, a difference in size, the size ratio between the two species being 1:1.3. It is possible that this implies a difference in food selection between the two species (Andersen 1988). It is concluded that all the above species are generally well segregated by micro-macrohabitat or some other resource dimension, e.g. activity, life cycle or perhaps food selection.

Traditionally niche-segregations have largely been explained as a result of interspecific competition in the past (Connell 1980). Although the importance of this interaction among carabid beetles can not be ignored, the evidence is weak (Niemelä 1993). Other ultimate causes for the spatial segregation of the *Bembidion* species may be predation and parasitism (Andersen & Skorping 1990, 1991), but it is unlikely that these two interactions alone are responsible for all the observed microhabitat differences between the species.

The macro-microhabitat preferences of the riparian species also influence their geographical distribution (Andersen 1983c, Andersen & Hanssen 1993). This especially applies to the lithophilous species. With a few exceptions, all the Coleoptera species of this ecological group are absent from the lowlands of Northern and northermost parts of Central Europe, i.e. South Sweden, Denmark, South Finland, Northern Germany, The Baltic States and large parts of The Netherlands. The explanation is that banks and shores of freshwaters in lowland areas mostly lack a gravelly/stony substratum; a comparatively high relief is necessary to form extensive gravelly/stony banks at least at running waters (Andersen 1983c; vide also photographs in
Andersen & Hanssen 1992). Gravelly/stony banks at freshwaters may occur secondarily in lowland areas, but the lithophilous species seem to be unable to colonize secondary habitats. The only exception is B. saxatile. The euryoecious nature of this species explains why it is the only lithophilous species that is widely distributed in South Sweden and the other parts of the lowlands of Northern and the northermost parts of Central Europe. Within the two last mentioned areas, however, B. saxatile mostly occurs on gravelly-clayish sea-shores (Lindroth 1945), a macrohabitat that is avoided by the other lithophilous species. Lindroth (1949) suggested that this occurrence on sea-shores was due to microclimate, but according to the discussion above, it is more likely that absence of suitable habitats at freshwater fringes are responsible for the macrohabitat distribution pattern within the areas of concern. The macrohabitat selection of B. saxatile in the northermost part of Central Europe therefore indicates that suitable habitats for the majority of the other, more stenoeccious lithophilous species are absent in the lowlands of Europe.

The ecological requirements of the sand and silt species may also, in part, determine their distribution as discussed by Andersen (1983 c) and Andersen & Hanssen (1993).

ACKNOWLEDGEMENT

I would like to express my gratitude to N. Peterson for help with the english.

SAMMENDRAG

Habitatvalg hos strandlevende Bembidion-arter (col. Carabidae) i Sør-Norge og Trøndelag

REFERENCES

Andersen, J. 1983b. Low thigmo-kinesis, a key mechanism in habitat selection by riparian Bembidion (Carabidae) species. - Oikos 44: 499-505.

Greenstone, M.H. 1979. A line transect density index for wolf spiders (Pardosa spp.) and a note on the applicability of catch per unit effort methods to entomological studies. - Ecol. Ent. 4: 23-29.

First announcement

6TH EUROPEAN CONGRESS OF ENTOMOLOGY
ČESKÉ BUDĚJOVICE, CZECH REPUBLIC

The 6th European Congress of Entomology will be held in České Budějovice (about 150 km south of Prague) from the 23th to 29th August 1998. It will be hosted by the Institute of Entomology of the Czech Academy of Sciences, the University of South Bohemia and the Czech Entomological Society.

The programme will include 1-2 days of plenary lectures, 3-4 days of offered papers and posters arranged in specialist symposia and a 1 day excursion.

All entomologists are invited, and it is particularly hoped that as many as possible will offer contributions based on recent original research. The registration fee is expected to be 200 US$ with a 50% reduction for students.

The FIRST CIRCULAR with more details is available by application from:
Dr. Tomas Soldan,
Institute of Entomology, AV CR,
31 Branisovska,
370 05 C. Budejovice
Czech Republic.

e-mail soldan@entu.cas.cz
fax: (+42 38) 43625
Tel: (+42 38) 40822
Mycetophilids (Diptera, Sciaroidea) from southeastern Norway

Bjørn Økland & Alexander I. Zaitzev

The present article gives a survey of mycetophilid species trapped during the research programme «Forest Ecology and Multiple Use». The material contains altogether 320 species of mycetophilids, of which 162 species are assumed to be new records for the Norwegian fauna, and five species have been described as new species for science in separate publications. Also species numbers of mycetophilids from Norway in previous publications are reviewed. Including the present material, the total number of mycetophilid species in Norway based on publications is at least 430.

Bjørn Økland, Norwegian Forest Research Institute, Høgskoleveien, 12, N-1432 Å, Norway. Alexander I. Zaitzev, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky prospect, Moscow, 117071, Russia.

INTRODUCTION

The mycetophilids are small to medium-sized dipterous insects. Most of the species are associated with forest environments; however, some species occur above tree-line or in other tree-less environments (Hutson et al. 1980, Väisänen 1984). According to existing rearing records, the larvae of most species develop in fungal microhabitats, while only a few species feed on algae, mosses and liverworts or are saprophagous in bird nests (Hackman et al. 1988, Yakovlev 1994).

A comprehensive material of mycetophilids was collected during the research programme «Forest Ecology and Multiple Use» (1990-94; Solbraa 1996), including altogether 43353 identified specimens. The main purpose was to achieve new information about how the diversity of this insect group is related to ecological factors in the forest landscape. Many mycetophilids appear to be favoured by shady habitats of oldgrowth forests. In the analyses, this group was most strongly influenced by the percent of oldgrowth forest in a wide surrounding landscape (100 km²), and by dead-wood continuity indicated by the presence of a high number of certain species of wood-inhabiting fungi and lichens (Økland 1995a, Økland 1996a). Clearcutting was found to induce a long-lasting reduction in species richness of mycetophilids (Økland 1994).

Knowledge of what species to be found is basic in many kinds of studies. In neighbouring countries, a check list of Diptera is found in England (Kloet & Hincks 1975) and Finland (Hackman 1980), while Norway has no modern check list of Diptera species. The number of mycetophilid species in Norway has been estimated to 497 (G.E.E. Sōli, in Ottesen 1993); however, far less species are published records.

This paper is meant to be a contribution to a future check list of Norwegian Diptera. It presents a list of mycetophilid species found during the the research programme «Forest Ecology and Multiple Use», and gives a short survey of species numbers of mycetophilids found in previous publications.
METHODS

The present material was collected in three ecological studies:

i) in 1991, mycetophilids were collected with one malaise trap (Townes 1962) in each of 15 sites. The material was identified by Bjørn Økland. Site descriptions are given in Table 1 (site 1-15), and additional information about study area and sampling design is found in Økland (1994).

ii) in 1992, mycetophilids were collected with 30 trunk-window traps (Økland 1996b) in each of 4 sites (sites 16-19 in Table 1). The material was identified by Alexander I. Zaitzev.

iii) in 1993, mycetophilids were collected with one malaise trap in each of 19 sites, and were identified by Alexander I. Zaitzev. Site informations are found Table 1 (sites 20-38), and additional information about study area and sampling design is found in Økland (1995a, 1996a).

Table 1. Information about the sampling sites. reg. = region code given by Økland (1981). trunk-w. = trunk-window traps.

<table>
<thead>
<tr>
<th>no.</th>
<th>site</th>
<th>municipality</th>
<th>reg.</th>
<th>UTM code</th>
<th>forest type</th>
<th>traps</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Høgkollen</td>
<td>Rælingen</td>
<td>AK</td>
<td>32VPM144356</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>2</td>
<td>Tappenberg I</td>
<td>Rælingen</td>
<td>AK</td>
<td>32VPM144358</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>3</td>
<td>Tappenberg II</td>
<td>Rælingen</td>
<td>AK</td>
<td>32VPM143362</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>4</td>
<td>Krokvannskalven</td>
<td>Rælingen</td>
<td>AK</td>
<td>32VPM136368</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>5</td>
<td>Styggvann</td>
<td>Lørenskog</td>
<td>AK</td>
<td>32VPM119424</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>6</td>
<td>Bøttervann I</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM150297</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>7</td>
<td>Bøttervann II</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM154297</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>8</td>
<td>Støa</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM170278</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>9</td>
<td>Nygard</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM174278</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>10</td>
<td>Kongsvika vest</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM159288</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>11</td>
<td>Bysetermosan</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM120315</td>
<td>spruce, clearcut</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>12</td>
<td>Skjelbreia</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM110330</td>
<td>spruce, clearcut</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>13</td>
<td>Ravnåsen</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM185273</td>
<td>spruce, clearcut</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>14</td>
<td>Trangene</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM157289</td>
<td>spruce, clearcut</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>15</td>
<td>Kongsvika sør</td>
<td>Enebakk</td>
<td>AK</td>
<td>32VPM161283</td>
<td>spruce, clearcut</td>
<td>malaise</td>
<td>22/4-1/6-91</td>
</tr>
<tr>
<td>16</td>
<td>Østby</td>
<td>Lørenskog</td>
<td>AK</td>
<td>32VPM1243</td>
<td>spruce-dominated</td>
<td>trunk-w.</td>
<td>28/4-6/9-92</td>
</tr>
<tr>
<td>17</td>
<td>Styggvann</td>
<td>Lørenskog</td>
<td>AK</td>
<td>32VPM119424</td>
<td>spruce-dominated</td>
<td>trunk-w.</td>
<td>28/4-6/9-92</td>
</tr>
<tr>
<td>18</td>
<td>Tappenberg</td>
<td>Rælingen</td>
<td>AK</td>
<td>32VPM143436</td>
<td>spruce-dominated</td>
<td>trunk-w.</td>
<td>28/4-6/9-92</td>
</tr>
<tr>
<td>19</td>
<td>Løkebrudalen</td>
<td>Lørenskog</td>
<td>AK</td>
<td>32VPM0836</td>
<td>spruce, regrowth</td>
<td>trunk-w.</td>
<td>28/4-6/9-92</td>
</tr>
<tr>
<td>20</td>
<td>Hirkjølen</td>
<td>Ringebu</td>
<td>OS</td>
<td>32VNP843450</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>21</td>
<td>Skvaldra</td>
<td>Ringsaker</td>
<td>HES</td>
<td>32VPN013903</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>22</td>
<td>Tronkeberget</td>
<td>Stor-Elvdal</td>
<td>HEN</td>
<td>32VPP124132</td>
<td>mixed coniferous</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>23</td>
<td>Helvete</td>
<td>Gausdal</td>
<td>OS</td>
<td>32VNP364034</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>24</td>
<td>Imsdalen</td>
<td>Ringebu</td>
<td>OS</td>
<td>32VNP867260</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>25</td>
<td>Elferdalen</td>
<td>Notodden</td>
<td>TEI</td>
<td>32VNM1177124</td>
<td>mixed coniferous</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>26</td>
<td>Håkåseter</td>
<td>Sør-Fron</td>
<td>OS</td>
<td>32VNP399099</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>27</td>
<td>Tjuruverket</td>
<td>Gausdal</td>
<td>OS</td>
<td>32VNN416873</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>28</td>
<td>Tappenberg I</td>
<td>Rælingen</td>
<td>AK</td>
<td>32VPM144358</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>29</td>
<td>Tjøstel</td>
<td>Aremark</td>
<td>Ø</td>
<td>32VPL572786</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>30</td>
<td>Finntjern</td>
<td>Jevnaker</td>
<td>OS</td>
<td>32VNM848718</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>31</td>
<td>Totenåsen</td>
<td>Østre Toten</td>
<td>OS</td>
<td>32VPN133163</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>32</td>
<td>Hesteskojtern</td>
<td>Jevnaker</td>
<td>OS</td>
<td>32VNM854737</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>33</td>
<td>Skotjernfjell</td>
<td>Lunner</td>
<td>OS</td>
<td>32VNM996797</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>34</td>
<td>Matholåga</td>
<td>Aremark</td>
<td>Ø</td>
<td>32VPL593695</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>35</td>
<td>Lortholkollen</td>
<td>Ringerike</td>
<td>BØ</td>
<td>32VNM846679</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>36</td>
<td>Ormetjernkampen</td>
<td>Gausdal</td>
<td>OS</td>
<td>32VNN454841</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>37</td>
<td>Fjellsjøkampen</td>
<td>Hurdal</td>
<td>AK</td>
<td>32VNP062049</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
<tr>
<td>38</td>
<td>Rundkollen</td>
<td>Nittedal</td>
<td>AK</td>
<td>32VNM988711</td>
<td>spruce-dominated</td>
<td>malaise</td>
<td>15/6-17/8-93</td>
</tr>
</tbody>
</table>
The taxonomy followed the nomenclature of the Catalogue of Palaearctic Diptera (Soós & Papp 1988), with additions from Väisänen (1984), Matile (1990) and Zaitzev (1994). The material is preserved in 70% alcohol at Norwegian Forest Research Institute, Ås.

RESULTS

The material contained altogether 320 species of mycetophilids (Sciaroidea), including 43353 specimens. Most species belonged to the family Mycetophilidae (289), while a smaller number of species belonged to Bolitophilidae (14), Keroplatidae (14) and Diadocidiidae (3) (Table 2). The material includes five species described as new species for science in previous publications (Zaitzev & Økland 1994, Økland 1995b).

Table 2. The mycetophilid species (Sciaroidea) captured in southeastern Norway in the period 1991-93 within the research programme «Forest Ecology and Multiple Use». For each species, the table gives the total number of individuals, the percent of the sites from which the species was trapped, and trapping sites (given as numbers with reference to Table 1). Species assumed to be new records for the Norwegian fauna are denoted by asterisks. Species described as new for science are denoted by double asterisks.

<table>
<thead>
<tr>
<th>Family Bolitophilidae</th>
<th>Species</th>
<th>Total Individuals</th>
<th>Percent of Sites</th>
<th>Trapping Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. austriaea</td>
<td>Bolitophila (Bolitophila) austriaea (Mayer, 1950)</td>
<td>4 ind.</td>
<td>5.3 %</td>
<td>site no.: 20, 27</td>
</tr>
<tr>
<td>B. cinerea</td>
<td>Bolitophila (Bolitophila) cinerea Meigen, 1818; 7 ind.; 13.2 % of sites</td>
<td>site no.: 18, 23, 25, 27, 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. aperta</td>
<td>Bolitophila (Bolitophila) aperta Lundström, 1914; 8 ind.; 10.5 % of sites</td>
<td>site no.: 16, 23, 27, 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. bimaculata</td>
<td>Bolitophila (Bolitophila) bimaculata Zetterstedt, 1838; 2 ind.; 5.3 % of sites</td>
<td>site no.: 23, 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. dubia</td>
<td>Bolitophila (Bolitophila) dubia Siekke, 1863; 1 ind.; 2.6 % of sites</td>
<td>site no.: 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. edwardsiana</td>
<td>Bolitophila (Bolitophila) edwardsiana Stackelberg, 1969; 1 ind.; 2.6 % of sites</td>
<td>site no.: 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. fumida</td>
<td>Bolitophila (Bolitophila) fumida Edwards, 1941; 2 ind.; 2.6 % of sites</td>
<td>site no.: 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. hybrida</td>
<td>Bolitophila (Bolitophila) hybrida (Meigen, 1804); 10 ind.; 13.2 % of sites</td>
<td>site no.: 16, 23, 24, 32, 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. nigrolineata</td>
<td>Bolitophila (Bolitophila) nigrolineata Landrock, 1912; 39 ind.; 15.8 % of sites; site no.: 23, 30, 32, 33, 36, 37</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Bolitophilidae</th>
<th>Species</th>
<th>Total Individuals</th>
<th>Percent of Sites</th>
<th>Trapping Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. occlusa</td>
<td>Bolitophila (Bolitophila) occlusa Edwards, 1913; 1 ind.; 2.6 % of sites</td>
<td>site no.: 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. pseudohybriida</td>
<td>Bolitophila (Bolitophila) pseudohybriida Landrock, 1912; 1 ind.; 2.6 % of sites; site no.: 36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. rossica</td>
<td>Bolitophila (Bolitophila) rossica Landrock, 1912; 2 ind.; 2.6 % of sites; site no.: 27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Keroplatidae Subfamily Macrocerinae</th>
<th>Species</th>
<th>Total Individuals</th>
<th>Percent of Sites</th>
<th>Trapping Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. grandis</td>
<td>Macrocer a grandis Lundström, 1912; 2 ind.; 5.3 % of sites; site no.: 27, 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. parva</td>
<td>Macrocer a parva Lundström, 1914; 197 ind.; 34.2 % of sites; site no.: 20, 21, 22, 23, 24, 26, 27, 31, 32, 33, 36, 37, 38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. pumilio</td>
<td>Macrocer a pumilio Loew, 1869; 1 ind.; 2.6 % of sites; site no.: 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. stigma</td>
<td>Macrocer a stigma Curtis, 1837; 2 ind.; 2.6 % of sites; site no.: 38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. stigmoides</td>
<td>Macrocer a stigmoides Edwards, 1925; 3 ind.; 7.9 % of sites; site no.: 21, 27, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. zetterstedti</td>
<td>Macrocer a zetterstedti Lundström, 1914; 57 ind.; 18.4 % of sites; site no.: 23, 24, 26, 27, 29, 36, 38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subfamily Keroplatinae</th>
<th>Species</th>
<th>Total Individuals</th>
<th>Percent of Sites</th>
<th>Trapping Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. testaceus</td>
<td>Keroplatus testaceus (Dalman, 1818); 1 ind.; 2.6 % of sites; site no.: 34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. flava</td>
<td>Neoplatyura flava (Macquart, 1826); 1 ind.; 2.6 % of sites; site no.: 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. discoloria</td>
<td>Orfelia discoloria (Meigen, 1818); 2 ind.; 5.3 % of sites; site no.: 22, 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. falcata</td>
<td>Orfelia falcata A.Zaitzev, 1994; 2 ind.; 5.3 % of sites; site no.: 30, 33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. unicolor</td>
<td>Orfelia unicolor (Staeger, 1840); 3 ind.; 2.6 % of sites; site no.: 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. perpusilla</td>
<td>Pyratula perpusilla (Edwards, 1913); 2 ind.; 5.3 % of sites; site no.: 27, 36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. zonata</td>
<td>Pyratula zonata (Zetterstedt, 1852); 7 ind.; 5.3 % of sites; site no.: 25, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. ochracea</td>
<td>Urytalpa ochracea (Meigen, 1818); 1 ind.; 2.6 % of sites; site no.: 32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family Diadocidiidae</th>
<th>Species</th>
<th>Total Individuals</th>
<th>Percent of Sites</th>
<th>Trapping Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. borealis</td>
<td>Diadocidia (Adidocidia) borealis Coquillett, 1900; 30 ind.; 28.9 % of sites; site no.: 21, 22, 23, 26, 27, 31, 32, 33, 35, 36, 37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. ferruginosa</td>
<td>Diadocidia (Diadocidia) ferruginosa (Meigen, 1830); 22 ind.; 23.7 % of sites; site no.: 21, 22, 24, 25, 29, 31, 32, 33, 35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

29
Diadocidia (Diadocidia) spinosula Tollett, 1948; 14 ind.; 26,3 % of sites; site no.: 17, 25, 26, 28, 29, 31, 33, 35, 36, 37.

Family Mycetophilidae

Subfamily Mycomyinae

Mycomya (Calcomycomya) pulchella (Dziedzicki, 1885); 5 ind.; 10,5 % of sites; site no.: 30, 32, 33, 36.

Mycomya (Mycomya) annulata (Meigen, 1818); 242 ind.; 31,6 % of sites; site no.: 22, 25, 28, 30, 31, 32, 33, 34, 35, 36, 38.

Mycomya (Mycomya) bicolor (Dziedzicki, 1885); 3 ind.; 5,3 % of sites; site no.: 27, 31.

Mycomya (Mycomya) brunnea (Dziedzicki, 1885); 2 ind.; 5,3 % of sites; site no.: 31, 34.

Mycomya (Mycomya) cinerascens (Macquart, 1826); 2 ind.; 5,3 % of sites; site no.: 36, 38.

Mycomya (Mycomya) dziadzickii Väisänen, 1981; 1 ind.; 2,6 % of sites; site no.: 21.

Mycomya (Mycomya) egregia (Dziedzicki, 1885); 3 ind.; 7,9 % of sites; site no.: 22, 27, 35.

Mycomya (Mycomya) fasciata (Zetterstedt, 1838); 9 ind.; 10,5 % of sites; site no.: 21, 27, 31, 36.

Mycomya (Mycomya) festivalis Väisänen, 1984; 2 ind.; 2,6 % of sites; site no.: 30.

Mycomya (Mycomya) hackmani Väisänen, 1984; 4 ind.; 2,6 % of sites; site no.: 27.

Mycomya (Mycomya) humida Garrett, 1924; 20 ind.; 7,9 % of sites; site no.: 21, 27, 36.

Mycomya (Mycomya) maculata (Meigen, 1804); 5 ind.; 5,3 % of sites; site no.: 21, 36.

Mycomya (Mycomya) marginata (Meigen, 1818); 2 ind.; 2,6 % of sites; site no.: 31.

Mycomya (Mycomya) mituda Väisänen, 1980; 1 ind.; 2,6 % of sites; site no.: 26.

Mycomya (Mycomya) nigricornis (Zetterstedt, 1852); 4 ind.; 2,6 % of sites; site no.: 21.

Mycomya (Mycomya) nitida (Zetterstedt, 1852); 98 ind.; 28,9 % of sites; site no.: 19, 21, 23, 24, 25, 27, 33, 34, 35, 36, 38.

Mycomya (Mycomya) norra Väisänen, 1984; 14 ind.; 13,2 % of sites; site no.: 22, 23, 27, 30, 32.

Mycomya (Mycomya) prominentis (Lundström, 1913); 3 ind.; 7,9 % of sites; site no.: 9, 14, 22.

Mycomya (Mycomya) pseudoapicalis (Landrock, 1925); 1 ind.; 2,6 % of sites; site no.: 36.

Mycomya (Mycomya) ruficollis (Zetterstedt, 1852); 1330 ind.; 42,1 % of sites; site no.: 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38.

Mycomya (Mycomya) shermani Garrett, 1924; 780 ind.; 34,2 % of sites; site no.: 21, 22, 24, 26, 27, 28, 30, 31, 32, 33, 35, 36, 38.

Mycomya (Mycomya) sigma Johannsen, 1910; 2 ind.; 5,3 % of sites; site no.: 27, 37.

Mycomya (Mycomya) tenuis (Walker, 1856); 1 ind.; 2,6 % of sites; site no.: 6.

Mycomya (Mycomya) trivittata (Zetterstedt, 1838); 19 ind.; 18,4 % of sites; site no.: 22, 24, 25, 30, 33, 36, 38.

Mycomya (Mycomya) tumida Winnertz, 1863; 8 ind.; 13,2 % of sites; site no.: 20, 21, 32, 33, 36.

Mycomya (Mycomya) vittiventris (Zetterstedt, 1852); 86 ind.; 31,6 % of sites; site no.: 21, 22, 24, 26, 27, 30, 31, 32, 33, 35, 36, 38.

Mycomya (Mycomyopsis) confusa Väisänen, 1979; 1 ind.; 2,6 % of sites; site no.: 35.

Mycomya (Mycomyopsis) penicillata (Dziedzicki, 1885); 76 ind.; 7,9 % of sites; site no.: 22, 25, 38.

Mycomya (Neomycomya) fimbriata (Meigen, 1818); 77 ind.; 26,3 % of sites; site no.: 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38.

Neoempheria pictipennis (Halliday, 1833); 1 ind.; 2,6 % of sites; site no.: 34.

Subfamily Sciophilinae

Acnemia falcata Zaitzev, 1982; 46 ind.; 28,9 % of sites; site no.: 21, 23, 24, 27, 30, 31, 32, 33, 35, 36, 38.

Acnemia nitidicollis (Meigen, 1818); 207 ind.; 65,8 % of sites; site no.: 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 21, 22, 23, 25, 26, 27, 28, 29, 33, 34, 36, 38.

Acomoptera difficilis (Dziedzicki, 1885); 11 ind.; 18,4 % of sites; site no.: 21, 22, 23, 25, 26, 27, 35.

Allocotocera pulchella (Curtis, 1837); 1070 ind.; 39,5 % of sites; site no.: 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38.

Anaclileia dispar (Winnertz, 1863); 52 ind.; 23,7 % of sites; site no.: 21, 23, 24, 26, 27, 30, 35, 36, 37.

Azana anomala (Staeger, 1840); 75 ind.; 23,7 % of sites; site no.: 4, 21, 23, 24, 26, 27, 31, 36, 38.

Leptomorphus (Leptomorphus) quadriracematus (Matsumura, 1916); 5 ind.; 10,5 % of sites; site no.: 30, 32, 33, 37.

Megalopelma nigroclavatus (Strobl, 1909); 1 ind.; 2,6 % of sites; site no.: 22.

Monoclona furcata Johannsen, 1910; 7 ind.; 15,8 % of sites; site no.: 21, 22, 25, 27, 33, 35.

Monoclona rufilatera (Walker, 1837); 3 ind.; 7,9 % of sites; site no.: 25, 29, 32.

Neuratelia nemoralis (Meigen, 1818); 27 ind.; 18,4 % of sites; site no.: 19, 20, 22, 23, 26, 27, 36.

Paratophila sciarina Mik, 1874; 1 ind.; 2,6 % of sites; site no.: 35.

Phthinia humilis Winnertz, 1863; 4 ind.; 10,5 % of sites; site no.: 21, 23, 26, 32.

Phthinia mira Ostroverkhova, 1979; 3 ind.; 7,9 % of sites;
<table>
<thead>
<tr>
<th>Species Name</th>
<th>Site Numbers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phthinia setosa</td>
<td>21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Sciophila bicuspidata Zaitzev, 1982</td>
<td>14 ind.; 5,3 % of sites; site no.: 20, 26.</td>
<td></td>
</tr>
<tr>
<td>Sciophila adamsi</td>
<td>21, 22, 23, 24, 26, 27, 31, 33, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Sciophila distincta</td>
<td>20, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38</td>
<td></td>
</tr>
<tr>
<td>Sciophila exserta</td>
<td>20, 22, 24, 26, 27, 30, 32, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Sciophila bicuspidata Zaitzev, 1982</td>
<td>14 ind.; 5,3 % of sites; site no.: 20, 26.</td>
<td></td>
</tr>
<tr>
<td>Sciophila lutea</td>
<td>20, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Sciophila nitidula</td>
<td>20, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Sciophila subbiscupidata</td>
<td>20, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38</td>
<td></td>
</tr>
<tr>
<td>Sciophila chrysocampylata</td>
<td>20, 24, 27, 29, 30, 32, 33, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Boletina brevicornis Zetterstedt, 1852</td>
<td>35 ind.; 23,7 % of sites; site no.: 20, 22, 24, 26, 27, 30, 32, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Boletina cincticornis Walker, 1848</td>
<td>23 ind.; 7,9 % of sites; site no.: 24, 27, 36.</td>
<td></td>
</tr>
<tr>
<td>Boletina cornuta A.Zaitzev, 1994</td>
<td>1 ind.; 2,6 % of sites; site no.: 24.</td>
<td></td>
</tr>
<tr>
<td>Boletina dispecta Dziedzicki, 1885</td>
<td>8 ind.; 2,6 % of sites; site no.: 24.</td>
<td></td>
</tr>
<tr>
<td>Boletina groenlandica Staeger, 1845</td>
<td>320 ind.; 23,7 % of sites; site no.: 20, 21, 23, 24, 26, 27, 33, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Boletina Jamalensis A.Zaitzev, 1994</td>
<td>7 ind.; 7,9 % of sites; site no.: 20, 21, 24.</td>
<td></td>
</tr>
<tr>
<td>Boletina lundbecki Lundstrom, 1912</td>
<td>321 ind.; 23,7 % of sites; site no.: 1, 5, 20, 22, 24, 26, 27, 35, 36</td>
<td></td>
</tr>
<tr>
<td>Boletina Lundstromi Lundrock, 1912</td>
<td>31 ind.; 18,4 % of sites; site no.: 5, 20, 23, 24, 26, 27, 31.</td>
<td></td>
</tr>
<tr>
<td>Boletina maculata Holmgren, 1870</td>
<td>29 ind.; 23,7 % of sites; site no.: 3, 5, 14, 20, 21, 23, 24, 27, 36.</td>
<td></td>
</tr>
<tr>
<td>Boletina nigricans Dziedzicki, 1885</td>
<td>1613 ind.; 44,7 % of sites; site no.: 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Boletina nigrofusca Dziedzicki, 1885</td>
<td>4075 ind.; 23,7 % of sites; site no.: 1, 2, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37</td>
<td></td>
</tr>
<tr>
<td>Boletina pectinunguis Edwards, 1932</td>
<td>1 ind.; 2,6 % of sites; site no.: 21.</td>
<td></td>
</tr>
<tr>
<td>Boletina plana (Walker, 1856)</td>
<td>305 ind.; 42,1 % of sites; site no.: 2, 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 35, 36, 37, 38</td>
<td></td>
</tr>
<tr>
<td>Boletina polaris Lundstrom, 1915</td>
<td>1 ind.; 2,6 % of sites; site no.: 5.</td>
<td></td>
</tr>
<tr>
<td>Boletina sciarina Staeger, 1840</td>
<td>638 ind.; 39,5 % of sites; site no.: 20, 21, 22, 23, 24, 25, 26, 27, 30, 32, 33, 34, 35, 36, 37</td>
<td></td>
</tr>
</tbody>
</table>

Subfamily Gnoristinae

Apolephthisa subincana (Curtis, 1837); 878 ind.; 76,3 % of sites; site no.: 1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37.

Boletina basalisa (Meigen, 1818); 514 ind.; 60,5 % of sites; site no.: 1, 4, 5, 6, 8, 9, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37.

Boletina bicuspidata Zaitzev, 1982; 1 ind.; 2,6 % of sites; site no.: 18.

Boletina distincta Garrett, 1925; 3 ind.; 5,3 % of sites; site no.: 4, 12.

Boletina exserta Zaitzev, 1982; 3 ind.; 2,6 % of sites; site no.: 29.

Boletina fenestella Curtis, 1837; 2 ind.; 5,3 % of sites; site no.: 33, 34.

Boletina geniculata Zetterstedt, 1838; 10 ind.; 10,5 % of sites; site no.: 27, 30, 31, 33.

Boletina hirta Meigen, 1818; 28 ind.; 10,5 % of sites; site no.: 4, 21, 33, 35.

Boletina lutea Macquart, 1826; 1 ind.; 2,6 % of sites; site no.: 29.

Boletina nonnisilva Hutson, 1979; 3 ind.; 5,3 % of sites; site no.: 27, 36.

Boletina pectinunguis (Lundstrom, 1914); 212 ind.; 36,8 % of sites; site no.: 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 34, 35, 36, 38.

Boletina stygata Hutson, 1979; 117 ind.; 39,5 % of sites; site no.: 21, 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37.
Boletina silvatica Dziedzicki, 1885; 18 ind.; 5.3 % of sites; site no.: 22, 31.

Boletina trivittata (Meigen, 1818); 133 ind.; 50.0 % of sites; site no.: 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 21, 23, 24, 27, 36.

Boletina villosa Landrock, 1912; 3 ind.; 7.9 % of sites; site no.: 27, 33, 35.

Coelophthinia thoracica (Winnertz, 1863; 4 ind.; 7.9 % of sites; site no.: 26, 31, 32.

Coelosia flava (Staeger, 1840); 23 ind.; 18.4 % of sites; site no.: 23, 27, 32, 33, 36, 37, 38.

Coelosia silvatica Landrock, 1918; 7 ind.; 15.8 % of sites; site no.: 13, 16, 20, 22, 24, 36.

Coelosia tenella (Zetterstedt, 1852); 18 ind.; 26,3 % of sites; site no.: 20, 25, 27, 28, 30, 31, 32, 35, 36.

Drepanocercus spinistylus Soli, 1993; 80 ind.; 36,8 % of sites; site no.: 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 36, 37.

Dziedzickia marginata (Dziedzicki, 1885); 144 ind.; 34,2 % of sites; site no.: 21, 22, 23, 24, 25, 27, 28, 30, 32, 33, 35, 36, 37.

Ectrepesthoneura hirta (Winnertz, 1846); 756 ind.; 63,2 % of sites; site no.: 2, 4, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38.

Ectrepesthoneura nigra Zaitzev, 1984; 5 ind.; 5.3 % of sites; site no.: 21, 24.

Ectrepesthoneura pubescens (Zetterstedt, 1860); 30 ind.; 18.4 % of sites; site no.: 11, 20, 22, 23, 35, 36, 37.

Ectrepesthoneura referata Plassmann, 1976; 513 ind.; 34,2 % of sites; site no.: 20, 21, 22, 23, 24, 27, 30, 31, 32, 33, 35, 36, 37.

Ectrepesthoneura tori Zaitzev et Økland, 1994; 10 ind.; 5.3 % of sites; site no.: 2, 3.

Leia bimaculata (Meigen, 1804); 1 ind.; 2,6 % of sites; site no.: 22.

Leia subfasciata (Meigen, 1818); 103 ind.; 18.4 % of sites; site no.: 20, 21, 22, 25, 30, 35, 36.

Leia winthemi Lehmann, 1822; 29 ind.; 23,7 % of sites; site no.: 21, 22, 24, 25, 27, 29, 33, 34, 36.

Rondaniella dimidiata (Meigen, 1804); 63 ind.; 23,7 % of sites; site no.: 21, 22, 25, 28, 32, 33, 36, 37, 38.

Tetragonura sylvatica (Curtis, 1837); 66 ind.; 7.9 % of sites; site no.: 28, 33, 34.

Subfamily Leiinae

Dynatosoma cochleare Strobl, 1895; 3 ind.; 7.9 % of sites; site no.: 5, 6, 17.

Dynatosoma fusicorne (Meigen, 1818); 49 ind.; 26,3 % of sites; site no.: 21, 22, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38.

Dynatosoma reciprocum (Walker, 1848); 24 ind.; 47,4 % of sites; site no.: 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 16, 17, 18, 22, 24, 27, 30, 32.

Dynatosoma rufescens (Zetterstedt, 1838); 23 ind.; 10,5 % of sites; site no.: 22, 27, 30, 36.

Palaedocosa janickii (Dziedzicki, 1923); 109 ind.; 44.7 % of sites; site no.: 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38.

Speolepta leptogaster (Winnertz, 1863); 2 ind.; 5.3 % of sites; site no.: 28.

Subfamily Mycetophilinae

Tribe Mycetophilini

Ectrepesthoneura hirta (Winnertz, 1846); 756 ind.; 63,2 % of sites; site no.: 2, 4, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38.

Ectrepesthoneura nigra Zaitzev, 1984; 5 ind.; 5.3 % of sites; site no.: 21, 24.

Ectrepesthoneura pubescens (Zetterstedt, 1860); 30 ind.; 18.4 % of sites; site no.: 11, 20, 22, 23, 35, 36, 37.

Ectrepesthoneura referata Plassmann, 1976; 513 ind.; 34,2 % of sites; site no.: 20, 21, 22, 23, 24, 27, 30, 31, 32, 33, 35, 36, 37.

Ectrepesthoneura tori Zaitzev et Økland, 1994; 10 ind.; 5.3 % of sites; site no.: 2, 3.

Leia bimaculata (Meigen, 1804); 1 ind.; 2,6 % of sites; site no.: 22.

Leia subfasciata (Meigen, 1818); 103 ind.; 18.4 % of sites; site no.: 20, 21, 22, 25, 30, 35, 36.

Leia winthemi Lehmann, 1822; 29 ind.; 23,7 % of sites; site no.: 21, 22, 24, 25, 27, 29, 33, 34, 36.

Palaeodocosia janickii (Dziedzicki, 1923); 109 ind.; 44.7 % of sites; site no.: 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38.

Palaeodocosia flaviventris (Strobl, 1894); 3 ind.; 2.6 % of sites; site no.: 28.

Palaeodocosia leptogaster (Winnertz, 1863); 2 ind.; 5.3 % of sites; site no.: 30, 36.

Synpha vitripennis (Meigen, 1818); 173 ind.; 28.9 % of sites; site no.: 22, 24, 25, 28, 29, 31, 32, 33, 34, 35, 37.

Subfamily Leiinae

Docosia fumosa Edwards, 1925; 3 ind.; 7.9 % of sites; site no.: 3, 5, 8.

Docosia gilvipes (Walker, 1856); 2 ind.; 5.3 % of sites; site no.: 11, 22.

Ectrepesthoneura bucura Plassmann, 1980; 287 ind.; 31,6 % of sites; site no.: 20, 21, 22, 23, 24, 26, 27, 30, 32, 33, 36, 37.

Ectrepesthoneura colyeri Chandler, 1980; 48 ind.; 7.9 % of sites; site no.: 25, 29, 34.
Mycetophila bohemica (Lastovka, 1963); 10 ind.; 13.2 % of sites; site no.: 18, 25, 27, 32, 36.

Mycetophila brevittarsata (Lastovka, 1963); 263 ind.; 39.5 % of sites; site no.: 20, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 35, 36, 38.

Mycetophila caudata Staeger, 1840; 1 ind.; 2.6 % of sites; site no.: 30.

Mycetophila confluens Dziedzicki, 1884; 28 ind.; 18.4 % of sites; site no.: 17, 18, 21, 25, 26, 27, 36.

Mycetophila curviseta Lundström, 1911; 3 ind.; 7.9 % of sites; site no.: 21, 25, 29.

Mycetophila dentata Lundström, 1913; 17 ind.; 21.1 % of sites; site no.: 21, 22, 26, 27, 29, 30, 32, 33.

Mycetophila dziedzickii Chandler, 1977; 12 ind.; 5.3 % of sites; site no.: 22, 27.

Mycetophila finlandica Edwards, 1913; 8 ind.; 13.2 % of sites; site no.: 27, 28, 32, 37, 38.

Mycetophila fungorum (De Geer, 1776); 345 ind.; 57.9 % of sites; site no.: 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38.

Mycetophila hetschkoi Landrock, 1918; 163 ind.; 34.2 % of sites; site no.: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36.

Mycetophila ichneumonea Say, 1823; 112 ind.; 39.5 % of sites; site no.: 16, 21, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 36, 37, 38.

Mycetophila immaculata (Dziedzicki, 1884); 1 ind.; 2.6 % of sites; site no.: 21.

Mycetophila laeta Walker, 1848; 197 ind.; 44.7 % of sites; site no.: 16, 17, 18, 19, 20, 21, 22, 25, 27, 28, 29, 30, 32, 33, 35, 36, 38.

Mycetophila lapponica Lundström, 1906; 1 ind.; 2.6 % of sites; site no.: 21.

Mycetophila lubomirskii Dziedzicki, 1884; 21 ind.; 10.5 % of sites; site no.: 22, 33, 34, 36.

Mycetophila luctuosa Meigen, 1830; 16 ind.; 15.8 % of sites; site no.: 16, 18, 19, 24, 25, 31.

Mycetophila marginata Winnertz, 1863; 9 ind.; 10.5 % of sites; site no.: 18, 19, 27, 36.

Mycetophila ocellus Walker, 1848; 2 ind.; 5.3 % of sites; site no.: 26, 30.

Mycetophila schnablii (Dziedzicki, 1884); 8 ind.; 10.5 % of sites; site no.: 20, 21, 27, 36.

Mycetophila sordida van der Wulp, 1874; 2 ind.; 5.3 % of sites; site no.: 22, 25.

Mycetophila striatoides (Landrock, 1927); 2 ind.; 5.3 % of sites; site no.: 27, 30.

Phronia bicornuta (Becker, 1908); 2 ind.; 5.3 % of sites; site no.: 21, 36.

Phronia bicolor Dziedzicki, 1889; 1 ind.; 2.6 % of sites; site no.: 5.

Phronia braueri Dziedzicki, 1889; 205 ind.; 39.5 % of sites; site no.: 20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38.

Phronia caliginosa Dziedzicki, 1889; 657 ind.; 89.5 % of sites; site no.: 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38.

Phronia cinerascens Winnertz, 1863; 167 ind.; 57.9 % of sites; site no.: 1, 2, 3, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33, 35, 36, 38.

Phronia cordata Lundström, 1914; 56 ind.; 7.9 % of sites; site no.: 24, 27, 36.

Phronia digitata Hackman, 1970; 4 ind.; 5.3 % of sites; site no.: 21, 36.

Phronia discreta Dziedzicki, 1889; 5 ind.; 13.2 % of sites; site no.: 21, 22, 27, 29, 35.

Phronia dziedzickii Lundström, 1906; 1 ind.; 2.6 % of sites; site no.: 36.

Phronia elegans Dziedzicki, 1889; 1 ind.; 2.6 % of sites; site no.: 31.

Phronia flavicollis Winnertz, 1863; 119 ind.; 50.0 % of sites; site no.: 4, 5, 14, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 38.

Phronia forcipata Winnertz, 1863; 98 ind.; 23.7 % of sites; site no.: 21, 22, 23, 25, 26, 32, 35, 36, 38.

Phronia fuscinventris Van duze, 1928; 7 ind.; 7.9 % of sites; site no.: 21, 24, 27.

Phronia jocosa Gagné, 1975; 3 ind.; 7.9 % of sites; site no.: 1, 5, 18.

Phronia mutabilis Dziedzicki, 1889; 1 ind.; 2.6 % of sites; site no.: 5.

Phronia nigricornis (Zetterstedt, 1852); 15 ind.; 15.8 % of sites; site no.: 21, 22, 27, 29, 32, 36.

Phronia nigripalpis Lundström, 1909; 5206 ind.; 50.0 % of sites; site no.: 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38.

Phronia obtusa Winnertz, 1863; 2 ind.; 2.6 % of sites; site no.: 11.

Phronia pecialis Dziedzicki, 1889; 3 ind.; 5.3 % of sites; site no.: 21, 36.

Phronia persimilis Hackman, 1970; 2 ind.; 5.3 % of sites; site no.: 1, 13, 20.

Phronia petulans Dziedzicki, 1889; 3 ind.; 7.9 % of sites; site no.: 1, 11, 36.

Phronia siebeckii Dziedzicki, 1889; 1 ind.; 2.6 % of sites; site no.: 25.

Phronia tenuis Winnertz, 1863; 4 ind.; 7.9 % of sites; site no.: 33.
no.: 20, 27, 36.

Phronia willistoni Dziedzicki, 1889; 4 ind.; 10,5 % of sites; site no.: 1, 5, 8, 36.

Platurocypta testata (Edwards, 1925); 1 ind.; 2,6 % of sites; site no.: 3.

Sceptonia concolor Winnertz, 1863; 7 ind.; 15,8 % of sites; site no.: 20, 22, 24, 25, 35, 36, 38.

Sceptonia fumipes Edwards, 1925; 205 ind.; 39,5 % of sites; site no.: 16, 20, 21, 22, 23, 24, 25, 26, 27, 30, 32, 33, 34, 35, 36.

Sceptonia fuscipalpis Edwards, 1925; 33 ind.; 26,3 % of sites; site no.: 9, 22, 24, 25, 27, 30, 33, 34, 35, 36.

Sceptonia nigra (Meigen, 1804); 12 ind.; 21,1 % of sites; site no.: 3, 4, 5, 7, 10, 11, 13, 18.

Sceptonia regni Chandler, 1991; 10 ind.; 15,8 % of sites; site no.: 25, 26, 29, 30, 32, 35.

Sceptonia tenuis Edwards, 1925; 1 ind.; 2,6 % of sites; site no.: 2.

Trichonta atricauda (Zetterstedt, 1852); 37 ind.; 15,8 % of sites; site no.: 21, 22, 24, 27, 31, 36.

Trichonta comis Gagné, 1981; 2 ind.; 5,3 % of sites; site no.: 27, 36.

Trichonta deliciata Gagné, 1981; 4 ind.; 7,9 % of sites; site no.: 4, 5, 11.

Trichonta fuscicauda (Zetterstedt, 1852); 31 ind.; 21,1 % of sites; site no.: 20, 21, 22, 23, 27, 33, 35, 36.

Trichonta flavicauda Lundström, 1911; 1 ind.; 2,6 % of sites; site no.: 2.

Trichonta hamata Mik, 1880; 92 ind.; 34,2 % of sites; site no.: 20, 21, 22, 23, 24, 26, 27, 30, 31, 32, 33, 36, 38.

Trichonta终端is (Walker, 1856); 2 ind.; 5,3 % of sites; site no.: 33, 36.

Trichonta venosa (Staeger, 1840); 16 ind.; 15,8 % of sites; site no.: 22, 25, 30, 31, 35, 36.

Trichonta viita (Meigen, 1830); 111 ind.; 44,7 % of sites; site no.: 4, 7, 8, 14, 20, 21, 22, 23, 24, 26, 27, 28, 32, 35, 36, 37, 38.

Trichonta vulgaris Loew, 1869; 2 ind.; 5,3 % of sites; site no.: 20, 31.

Zygomyia humeralis (Wiedemann, 1817); 17 ind.; 13,2 % of sites; site no.: 1, 5, 14, 25, 28.

Zygomyia kiddi Chandler, 1991; 32 ind.; 18,4 % of sites; site no.: 21, 25, 27, 28, 30, 32, 35.

Zygomyia notata (Stannius, 1831); 10 ind.; 10,5 % of sites; site no.: 4, 5, 9, 10.

Zygomyia pictipennis (Staeger, 1840); 2 ind.; 2,6 % of sites; site no.: 24.

Zygomyia pseudohumeralis Caspers, 1980; 86 ind.; 39,5 % of sites; site no.: 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 38.

Zygomyia semifusca (Meigen, 1818); 75 ind.; 28,9 % of sites; site no.: 16, 22, 25, 28, 29, 30, 32, 34, 35, 36, 38.

Zygomyia valida Winnertz, 1863; 2 ind.; 2,6 % of sites; site no.: 26.

Zygomyia varia (Staeger, 1840); 6 ind.; 7,9 % of sites; site no.: 20, 27, 36.

Zygomyia zaitzevi Chandler, 1991; 5 ind.; 2,6 % of sites; site no.: 22.

Tribe Exechiini

Allodia (*Allodia*) *anglofennica* Edwards, 1921; 14 ind.; 13,2 % of sites; site no.: 16, 17, 18, 19, 23.

Allodia (*Allodia*) *lugens* (Wiedemann, 1817); 127 ind.; 21,1 % of sites; site no.: 9, 13, 16, 17, 18, 19, 20, 23.

Allodia (*Allodia*) *lundstroemi* Edwards, 1921; 3 ind.; 5,3 % of sites; site no.: 17, 20.

Allodia (*Allodia*) *pixydiiformis* Zaitzev, 1982; 88 ind.; 21,1 % of sites; site no.: 1, 8, 11, 15, 16, 17, 18, 19.

Allodia (*Allodia*) *septentrionalis* Hackman, 1971; 8 ind.; 10,5 % of sites; site no.: 16, 17, 18, 27.

Allodia (*Allodia*) *simplex* Zaitzev, 1982; 2 ind.; 5,3 % of sites; site no.: 1, 3.

Allodia (*Allodia*) *truncata* Edwards, 1921; 10 ind.; 13,2 % of sites; site no.: 9, 16, 17, 18, 19.

Allodia (*Allodia*) *tuomikoskii* Hackman, 1971; 8 ind.; 10,5 % of sites; site no.: 21, 23, 27, 36.

Allodiopsis (*Notolopha*) *cristata* (Staeger, 1840); 2 ind.; 5,3 % of sites; site no.: 23, 27.

Anatella ciliata Winnertz, 1863; 8 ind.; 18,4 % of sites; site no.: 17, 18, 25, 27, 31, 36, 38.

Anatella flavomaculata Edwards, 1925; 1 ind.; 2,6 % of sites; site no.: 5.

Anatella gibba Winnertz, 1863; 1 ind.; 2,6 % of sites; site no.: 11.
Anatella lenis Dziedzicki, 1923; 3 ind.; 7,9 % of sites; site no.: 16, 17, 27.

Bachypeza (Bachypeza) bisignata Winnertz, 1863; 5 ind.; 10,5 % of sites; site no.: 5, 27, 29, 36.

Brevicornu (Brevicornu) arcticum (Lundström in Lundström & Frey, 1913); 2 ind.; 2,6 % of sites; site no.: 20.

Brevicornu (Brevicornu) bipartitum Lastovka et Matile, 1974; 158 ind.; 18,4 % of sites; site no.: 4, 20, 21, 22, 24, 27, 36.

Brevicornu (Brevicornu) boreale (Lundström, 1914); 1 ind.; 2,6 % of sites; site no.: 27.

Brevicornu (Brevicornu) boreale (Lundström, 1914); 1 ind.; 2,6 % of sites; site no.: 27.

Brevicornu (Brevicornu) disjunctum Zaitzev, 1988; 2 ind.; 2,6 % of sites; site no.: 12.

Brevicornu (Brevicornu) fuscipenne (Staeger, 1840); 31 ind.; 36,8 % of sites; site no.: 1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 15, 27, 31, 36.

Brevicornu (Brevicornu) griseicole (Staeger, 1840); 5 ind.; 5,3 % of sites; site no.: 23, 26.

Brevicornu (Brevicornu) griseolum (Zetterstedt, 1852); 26 ind.; 15,8 % of sites; site no.: 7, 20, 22, 24, 27, 36.

Brevicornu (Brevicornu) griseolum (Zetterstedt, 1852); 35 ind.; 28,9 % of sites; site no.: 1, 2, 4, 6, 8, 9, 11, 12, 14, 27, 36.

Brevicornu (Brevicornu) occasionale Zaitzev, 1988; 2 ind.; 2,6 % of sites; site no.: 36.

Brevicornu (Brevicornu) ruficorne (Meigen, 1839); 132 ind.; 31,6 % of sites; site no.: 4, 16, 17, 18, 19, 21, 24, 26, 27, 31, 35, 36.

Brevicornu (Brevicornu) semiflava (Lundström, 1911); 2 ind.; 5,3 % of sites; site no.: 5, 14.

Cordyla brevicornis (Staeger, 1840); 124 ind.; 60,5 % of sites; site no.: 2, 4, 5, 12, 14, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38.

Cordyla crassicornis Meigen, 1818; 16 ind.; 26,3 % of sites; site no.: 3, 5, 7, 11, 25, 28, 31, 35, 36, 38.

Cordyla fissa Edwards, 1925; 3 ind.; 7,9 % of sites; site no.: 1, 5, 14.

Cordyla flaviceps (Staeger, 1840); 11 ind.; 10,5 % of sites; site no.: 22, 27, 29, 34.

Cordyla fusca Meigen, 1804; 114 ind.; 71,1 % of sites; site no.: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 25, 26, 27, 30, 31, 32, 33, 34, 35, 37, 38.

Cordyla nitens Winnertz, 1863; 3 ind.; 2,6 % of sites; site no.: 30.

Cordyla parvipalpis Edwards, 1925; 75 ind.; 34,2 % of sites; site no.: 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 29.

Cordyla pusilla Edwards, 1925; 2 ind.; 5,3 % of sites; site no.: 4, 25.

Cordyla seminflava (Staeger, 1840); 3 ind.; 7,9 % of sites; site no.: 1, 3, 21.

Cordyla sixi (Barendrecht, 1938); 14 ind.; 23,7 % of sites; site no.: 20, 21, 22, 23, 24, 26, 27, 35, 36.

Exechia confinis Winnertz, 1863; 11 ind.; 10,5 % of sites; site no.: 8, 16, 17, 18.

Exechia contaminata Winnertz, 1863; 4 ind.; 7,9 % of sites; site no.: 10, 16, 17.

Exechia dizonana Edwards, 1924; 2 ind.; 5,3 % of sites; site no.: 17, 21.

Exechia dorsalis (Staeger, 1840); 19 ind.; 18,4 % of sites; site no.: 1, 9, 13, 14, 16, 17, 18.

Exechia exigua Lundström, 1909; 4 ind.; 5,3 % of sites; site no.: 17, 23.

Exechia frigida (Boheman, 1865); 5 ind.; 10,5 % of sites; site no.: 22, 23, 27, 36.

Exechia fusca (Meigen, 1804); 21 ind.; 10,5 % of sites; site no.: 16, 17, 18, 36.

Exechia lundstroemi Lundström, 1923; 7 ind.; 10,5 % of sites; site no.: 16, 17, 18, 24.

Exechia lucidula (Zetterstedt, 1838); 1 ind.; 2,6 % of sites; site no.: 3.

Exechia nigra Edwards, 1925; 1 ind.; 2,6 % of sites; site no.: 24.

Exechia nigroscutellata Lundström, 1912; 2 ind.; 2,6 % of sites; site no.: 17.

Exechia parva Lundström, 1909; 8 ind.; 10,5 % of sites; site no.: 16, 17, 18, 19.

Exechia parvula (Zetterstedt, 1852); 4 ind.; 5,3 % of sites; site no.: 16, 17.

Exechia pseudocincta Strobl, 1910; 1 ind.; 2,6 % of sites; site no.: 16.

Exechia repanda Johannsen, 1912; 4 ind.; 10,5 % of sites; site no.: 3, 11, 17, 19.

Exechia separata Lundström, 1912; 5 ind.; 7,9 % of sites; site no.: 16, 18, 27.

Exechia unimaculata (Zetterstedt, 1860); 1 ind.; 2,6 % of sites; site no.: 5.

Exechiopsis (Exechiopsis) clypeata (Lundström, 1911); 2 ind.; 5,3 % of sites; site no.: 22, 27.

Exechiopsis (Exechiopsis) forcipata (Lackschewitz, 1937); 3 ind.; 2,6 % of sites; site no.: 17.

Exechiopsis (Exechiopsis) indecisa (Walker, 1856); 3 ind.; 7,9 % of sites; site no.: 5, 22, 27.

Exechiopsis (Exechiopsis) intersecta (Meigen, 1818); 1 ind.; 2,6 % of sites; site no.: 11.
DISCUSSION

The taxonomic tools have been considerably developed since the earliest records of mycetophilids from Norway. Several of the old-record taxa still exist, but many of them are found under new genera or species names due to revisionary works. It might be that new identifications according to modern taxonomy would prove that some of the old records were placed in wrong taxa.

In the catalogue of Siebke (1877), 62 species names are recognized as still-existing mycetophilid taxa. In addition, this work contains some unknown species names and species considered doubtful in modern literature (Soós & Papp 1988). Soot-Ryen (1942) summarized the published records of mycetophilids up to the beginning World War II, and included also some old records which were not mentioned in the catalogue of Siebke. This publication added another 12 mycetophilid species of still existing taxa (though, some of them under new names today), and raised the total number to 74. The inventory of Krogerus (1960) contained 2 species records of mycetophilids from Norway; however, none of them were new to the Norwegian fauna. If the old records were put in correct taxa according to modern taxonomy, all of the abovementioned publications and the Catalogue of Palaearctic Diptera (Soós & Papp 1988) included altogether 96 mycetophilid species from Norway.

The number of mycetophilid records has accelerated in the nineties. Two new species were added by Økland & Søli (1992), 41 species by Kjærandsen (1992, 1993), and 129 species by Søli (1994a, 1994b), giving altogether 268 species from Norway. Apparently, the present material adds another 162 new species. With the abovementioned assumptions, at least 430 mycetophilid species are documented by Norwegian records in the literature, 15 species of Bolitophilidae, 22 species of Keroplatidae (incl. Macrocercinae), 4 species of Diadocidiidae and 389 species of Mycetophilidae. Thus, we are getting closer to the estimate of 497 mycetophilid species in Norway given in Ottesen (1993).

The present review of the Norwegian species numbers of mycetophilids is not exhaustive. Previous publications of Norwegian mycetophilids may have been overlooked, and there are several records of mycetophilids which have not been published, and they may contain new species for the Norwegian fauna. The rapid progress of new Norwegian records in recent years may indicate that there are still many species to be found. It is assumed that many new records may be done in deciduous forest of the lowlands, since modern studies of such forests are under-represented. Furthermore, revisionary works may change species names and rearrange the classification at higher levels. Despite this, the present review of species records may hopefully be a useful contribution to a future check list of Diptera in Norway.

SAMMENDRAG

Soppmygg (Diptera, Sciaroidea) fra Østlandet (Norge)

Denne artikkelen gir en oversikt over oppmyggarter fanget i løpet av forskningsprogrammet "Skogskologi og flersidig skogbruk". Matrialet omfatter i alt 320 oppmyggarter, hvorav 162 arter antas å være nye for den den norske faunaen, og 5 er nybeskrivne arter som er gjengitt i egne publikasjoner. Det gis også en oversikt over artsantall av oppmygg fra Norge i tidligere
publikasjoner. Inkludert dette materialet er antallet av publiserte soppmyggarter fra Norge minst 430.

REFERENCES

Økland, K.A. 1981. Division of Norway for use in biogeographic work - a revision of the Strand-system. Fauna 34: 167-178. (in Norwegian)
Fangstanlegg for rein, gammel virksomhet og tradisjon i Rondane

handler om hvordan de første nordmenn jaktet og levde. Her får du en utførlig beskrivelse av hvordan steinaldermennesket brukte sin kløkt for å fange rein, og de sinnrike innretningene de brukte til dette.

Dette er interessant! Jeg kjøpereks. av boken (KR. 150.--+porto)

Navn: ..

Adresse: ...

Postnr./Sted ..

Ring 73 58 05 00, eller skriv til NINA•NIKU, 7005 Trondheim.

Merk konvolutten "Barth-rapport"
Faunistic remarks on Norwegian Ichneumonidae (Hymenoptera)

Matthias Riedel & Øistein Berg

The distribution of many European Ichneumonidae (Hymenoptera) is still incompletely known. In this faunistic survey, we record 275 species from Norway which have been mostly collected in the Southern parts of the country. 78 of them are new for the fauna of Norway.

Dr. med. Matthias Riedel, Klinik Fallingbostel, Kolkgew, D-29683 Fallingbostel, Germany. Øistein Berg, Kitty Kiellands vei 19 C, N-1346 Gjettum, Norway.

INTRODUCTION

The Ichneumonidae form an extremely large family of Hymenoptera with an estimated 60,000 extant species worldwide. More than 2,000 different species occur in England, and similar numbers might be assumed for other European countries (Gauld and Bolton 1988).

This large, diverse, and important group of parasitoid wasps has attracted only a few entomologists, and our knowledge of the distribution of many species is still fragmentary. Older lists accounting Norwegian Ichneumonidae (Strand 1898, 1900, 1906, 1913, 1919; Ulbricht 1912; Roman 1936, 1942) are largely outdated now and should be used with care, since the nomenclature of most groups has been changed substantially in the last decades. Furthermore, recent revisions redefined the limitations of many species and described a considerable amount of new ones. However, for major groups of Ichneumonidae (e.g. many genera of the subfamilies Phygadeuontinae, Mesochorinae and Ctenopelmatinae) these modern revisions which would be necessary for an unequivocal determination are still lacking.

Some newer publications deal with ichneumonids from Norway (Jussila 1973, 1976a, 1976b; Wiig 1982), but it is clear that these faunistic inventories remain fragmentary. Thus, it seems desirable to make some additions.

MATERIAL

In the present paper we address to a small collection of Ichneumonidae being compiled within the last few years. To avoid misinterpretations we excluded all species from this list which have not been identified certainly. The remaining material was mostly collected in the Southern parts of the country.

LIST OF SPECIES

Species new for the fauna of Norway are marked by asterisks. Biogeographic regions are given according to Økland (1981)

ADELOGNATHINAE

1 Adelognathus brevicornis Holmgren, 1855
 BØ Hurum: Mølen (EIS 19), 1 ♀ 14 July 1989. Known from Northern and Central Europe and found in Norway (Roman 1918).

ALOMYINAE

2 Alomya debellator (Fabricius, 1793)
 Ø Sarpsborg: Skjeberg, Grimsøy (EIS 20), 1 ♂ 10 August 1989; AK Askar: Vardåsen (EIS 28), 1 ♂ 6
ANOMALONINAE

3. **Agrypon clandestinum** (Gravenhorst, 1829)
 - Recorded from Norway (Strand 1900).

4. **Agrypon flaveolatum** (Gravenhorst, 1807)

5. **Agrypon flexorium** (Thunberg, 1822)
 - Aremark: Vestfjella (EIS 21), 1 ♀ 29 August 1992, known from Norway (Strand 1913, Roman 1942).

6. **Erigorgus cerinops** (Gravenhorst, 1829)

7. **Therion brevicorne** (Gravenhorst, 1829)
 - Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 1988. A rare species which has previously been recorded from Central Europe (Gauld and Mitchell 1977).

8. **Therion circumflexum** (Linne, 1758)

BANCHINAE

Banchini

9. **Banchus falcatorius** (Fabricius, 1775)

10. **Banchus volutatorius** (Linné, 1758)

11. **Exetastes adpressorius** (Thunberg, 1822)
 - AK Ås: Arungen (EIS 28), 1 ♀ 25 July 1993; AK Bærum: Børøya (EIS 28), 1 ♀ 10 August 1993; TEI Bø: Verpe (EIS 17), 1 ♀ and 2 ♂ 31 July and 1 August 1993. Previously recorded from Norway (Roman 1942).

12. **Exetastes illusor** (Gravenhorst, 1829)
 - Ø Moss: Jeløy, Alby Gods (EIS 19), 1 ♀ 28 June 1993, known from Norway (Roman 1936, Jussila 1976a).

13. **Exetastes laevigator** (Villiers, 1789)
 - FN Porsanger: Gårudak (Goarahat) (EIS 174), 1 ♀ 27 June 1992; FN Porsanger: Børselv (EIS 182), 1 ♀ 26 June 1992, found earlier in Norway (Strand 1898, 1906, Roman 1936).

Glyptini

14. **Glypta (Diblastomorpha) cylindrator** (Fabricius, 1787)
 - [syn. bicornis Boie, 1850]
 - MRI Sunndal: Sande (EIS 78), 1 ♀ 19 July 1983, known from Norway (Jussila 1976a).

15. **Glypta (Conoblasta) extincta** (Ratzeburg, 1852) [syn. nigrivertris Thomson, 1889]
 - Ø Sarpsborg: Tune, Tuneiavnet (EIS 20), 1 ♂ 16 June 1991, widespread in Northern and Central Europe, recorded from Norway (Jussila 1976a).

16. **Glypta mensuator** (Fabricius, 1775) [syn. lugabrina Holmgren, 1860]
 - RY Karmøy: Veå (EIS 13), 1 ♀ 22 August 1993, recorded from Norway (Strand 1898).

Lissonotini

17. **Glypta resinanae** Hartig, 1838

18. **Glypta scalaris** Gravenhorst, 1829

Ussonotini

19. **Arenetra pilosella** (Linne, 1758)
 - OS Lunner: Grindvold (EIS 36), 2 ♀ 1 May 1988, recorded from Norway (Jussila 1976a).

20. **Cryptopimpla errabunda** (Gravenhorst, 1829)

21. **Arenetra pilosella** (Gravenhorst, 1829)
 - OS Lunner: Grindvold (EIS 36), 2 ♀ 1 May 1988, recorded from Norway (Jussila 1976a).

22. **Lissonota clypeator** (Gravenhorst, 1829) [syn. cylindraator auct. nec Fabricius]

23. **Lissonota coracinus** (Gmelin, 1790) [syn. bellator Gravenhorst, 1807]

*24 **Lissonota culiciformis** (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 25 August 1993, widespread in Europe and recorded from Sweden and Finland (Aubert 1978).

*25 **Lissonota freyi** Hellén, 1915
ON Lom: Memurubu, 985 m.a.s.l. (EIS 61), 1 ♂ 27 August 1989, known from Finland and Central Europe (Aubert 1978).

*26 **Lissonota funebris** Habermehl, 1923
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 24 April 1993, known from Finland and Central Europe (Aubert 1978).

*27 **Lissonota rusticator** (Thunberg, 1822) [syn. *segmentator* auct. nec Fabricius]
Ø Skjeberg: Grimsoy, Dusa (EIS 20), 1 ♀ 17 July 1993, reported from Norway (Roman 1936, Jussila 1976a).

*28 **Lissonota setosa** (Geoffroy, 1785)

COLLYRIINAE

*30 **Collyria coxator** (Villiers, 1789)

CREMASTINAE

*31 **Cremastus geminus** Gravenhorst, 1829

*32 **Cremastus infirmus** Gravenhorst, 1829
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 13 August 1993, reported from Norway (Jussila 1976a).

CTENOPELMATINAE

Ctenopelmatini

*33 **Xenoschesis fulvipes** (Gravenhorst, 1829)
HOI Ulvik: Finse (EIS 42), 1 ♀ 19 July 1991, reported from Norway (Strand 1900, Jussila 1973)

Mesoleiini

*34 **Alexeter fallax** (Holmgren, 1855)
SFI Vik: Orvedal (EIS 50), 1 ♀ 16 July 1991, previously found in Norway (Roman 1936, Jussila 1976a).

*35 **Alexeter nebulator** (Thunberg, 1822) [syn. *gracilentus* Holmgren, 1855]

*36 **Alexeter rapinator** (Gravenhorst, 1829)
Ø Sarpsborg: Skjeberg, Skjebergdal (EIS 20), 1 ♂ 13 August 1993, known from Central Europe.

*37 **Alexeter sectator** (Thunberg, 1822)

*38 **Anoncus gracilicornis** Holmgren, 1855

*39 **Campodorus incidens** (Thomson, 1894)
Ø Sarpsborg: Tune, Tunevannet (EIS 20), 1 ♀ 22 August 1992, known from Sweden.

*40 **Campodorus molestus** (Holmgren, 1855)
ON Lom: Memurubu, 985 m.a.s.l. (EIS 61), 1 ♂ 27 August 1989, previously known from Norway (Jussila 1973, 1976a).

*41 **Campodorus viduus** (Holmgren, 1855)

*42 **Lagarotis debitor** (Thunberg, 1822)
Ø Sarpsborg: Skjeberg, Skjebergdal (EIS 20), 1 ♀ 25 September 1992; AK Asker: Båstad (EIS 28), 1 ♂ 16 September 1992, known from Norway (Roman 1936).

*43 **Lamachus eques** (Hartig, 1838)
VAY Marnardal: Bjelland (EIS 5), 1 ♂ 3 May 1982, widespread in Northern and Central Europe.

*44 **Mesoleius s.str. armillatorius** (Gravenhorst, 1807)
Ø Aremark: Bøensætre (EIS 21), 1 ♂ 9 July 1993, previously recorded from Norway (Roman 1936, Jussila 1976a).

*45 **Scopesis fraternatus** (Holmgren, 1855)
ON Dovre: Dombås (EIS 71), 1 ♀ 15 July 1988.
Widespread in Northern and Central Europe, reported from Norway (Jussila 1973).

46 *Scopesis frontator* (Thunberg, 1822)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 1 October 1987; found in Norway (Strand 1913).

Euryproctini

47 *Euryproctus crassicornis* Thomson, 1889
Ø Fredrikstad: Borge (EIS 20), 1 ♀ 24 July 1993, known from Norway (Strand 1913).

48 *Gunomeria macrodactyla* (Holmgren, 1855)
Ø Aremark: Bønsretre (EIS 21), 1 ♀ 9 July 1993, recorded from Norway (Roman 1942).

49 Hadrodactylus graminicola Idar, 1979

50 *Hadrodactylus paludicola* (Holmgren, 1854)

51 *Hadrodactylus tarsator* Thomson, 1883
Hvaler: Åssøya (EIS 12), 1 ♂ 6 June 1992, known from Norway (Idar 1974).

52 *Pantorhastes xanthostomus* (Gravenhorst, 1829)

Perilissini

54 *Absyrtus vicinator* (Thunberg, 1822)

55 *Perilissus filicornis* (Gravenhorst, 1820)

56 *Perilissus rufoniger* (Gravenhorst, 1820)
Ø Eidssberg: Mysen (EIS 20) 1 ♂ 23 May 1993; AK Asker: Vardåsen (EIS 28), 1 ♂ 6 June 1993, previously reported from Norway (Strand 1898, 1919, Jussila 1973).

57 *Perilissus spilonotus* (Stephens, 1838) [syn. *subcinctus* Holmgren, 1855]
Ø Fredrikstad: Onsøy, Rauer (EIS 19), 2 ♀ 29 July 1989, widespread in Northern and Central Europe, reported from Norway (Roman 1936).

Pionini

58 *Pion foritpes* (Gravenhorst, 1829)
VE Tjome: Moutmarka (EIS 19), 1 ♂ 7 June 1989 and 1 ♀ 12 June 1989; previously recorded from Norway (Strand 1898, 1913, Roman 1942, Jussila 1976a).

59 *Rhorus longicornis* (Holmgren, 1856)

60 Sympherta facialis (Hellen, 1941)
VE Larvik: Hedrum, Gjønnesvann (EIS 19), 1 ♀ 29 June 1983; known from Central Europe and Finland (Hinz 1991).

DIPLAZONTINAE

61 *Diplazon annulatus* (Gravenhorst, 1829)

62 *Diplazon laetatorius* (Fabricius, 1781)

63 *Diplazon pectoratorius* (Thunberg, 1822)

64 Diplazon scutatorius Teunissen, 1934
Ø Skjeberg: Skjebergdalen (EIS 20), 1 ♂ 15 August 1990, a widespread species which was mixed with *D. tetragonus* (Thunberg) until its status has recently been clarified by Diller (1982).

65 *Diplazon tetragonus tetragonus* (Thunberg, 1822)

66 *Promethes sulcator sulcator* (Gravenhorst, 1829)

67 *Sussaba pulchella* (Holmgren, 1856) [syn. *laticarpus* Thomson, 1890]

68 *Syrphoctonus neopulcher* (Horstmann, 1968) [syn. *pulcher* auct. nec Holmgren]
Ø Fredrikstad: Borge, Borge Varde (EIS 20), 1 ♀ 21 August 1992.

69 *Syrphophilus bizonarius* (Gravenhorst, 1829)

70 *Tymmophorus rufiventris* (Gravenhorst, 1829) [syn. *holmgreni* Bridgman, 1882]
Ø Sarpsborg: Skjebeg, Skjebegdalen (EIS 20), 1 ♂ 15 August 1990. Widespread in Northern and Central Europe, reported from Norway (Strand 1913).

EPHALTINAE

Rhyssini

71 *Rhyssa persuasoria* (Linne, 1758)
VE Larvik: Tagtvedt, Orøy (EIS 19), 1 ♂ 9 June 1978, previously known from Norway (Strand 1898, Jussila 1976a).

Delomeristini

72 *Delomerista laevis* (Gravenhorst, 1829)
HOI Ulvik: Finse (EIS 42), 1 ♀ 27 July 1991; widespread in Norway (Strand 1900, 1913, Roman 1936, Jussila 1973, 1976a)

73 *Delomerista mandibularis* (Gravenhorst, 1829)
AK Asker: Vardåsen (EIS 28), 1 ♀ 6 June 1993, known from Norway (Strand 1898, Roman 1936)

74 *Perithous divinator* (Rossius, 1790)

75 *Perithous scurrus* (Panzer, 1805) [syn. *mediator* Fabricius, 1804 praeocc.]
Ø Sarpsborg: Tune, Råkild (EIS 20), 1 ♀ 10 August 1993, recorded from Norway (Strand 1898, 1906, Jussila 1976a).

Pimplini

76 Apechthis rufata (Gmelin, 1790)

77 *Itoplectis alternans* (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkild (EIS 20), 1 ♀ 5 September 1987 and 1 ♀ 28 May 1988, known from Norway (Jussila 1976a).

78 *Itoplectis aterrima* Jussila, 1965
AK Asker: Vardåsen (EIS 28), 1 ♀ 28 August 1993, widespread in Europe and known from Norway (Jussila 1976a).

*79 *Itoplectis clavicornis* (Thomson, 1877)
VAY Grimstad: Søm (EIS 6), 1 ♀ 5 May 1986, known from Sweden, Finland, and Central Europe (Aubert 1969).

80 *Itoplectis maculator* (Fabricius, 1775)
Ø Sarpsborg: Tune, Gråulum (EIS 20), 1 ♀ 16 June 1993; AK Asker: Vardåsen (EIS 28), 1 ♀ 20 May 1989 and 1 ♀ 3 June 1992; AK Oslo: Sogn (EIS 28), 1 ♀ 16 July 1989, reported from Norway (Strand 1898, Roman 1942).

81 *Pimpla flavicosta* Thomson, 1877
Ø Sarpsborg: Tune, Råkild (EIS 20), 1 ♀ 10 August 1993; Ø Råde: Tomb (EIS 20), 1 ♀ 22 August 1980; TEI Hjartdal: Sauland (EIS 26), 1 ♀ 1 August 1993, known from Norway (Strand 1898, Jussila 1973).

Ephialtini

82 *Pimpla hypochondriaca* (Retzius, 1783) [syn. *instigator* Fabricius, 1793]
VE Larvik: Brunlanes, Mørje (EIS 11), 1 ♀ 12 August 1981 and 1 ♀ 22 August 1980; TEI Hjartdal: Sauland (EIS 26), 1 ♀ 1 August 1993, known from Norway (Strand 1898, Jussila 1973).

83 *Pimpla sodalis sodalis* (Ruthe, 1859)
HOI Ulvik: Finse (EIS 42), 1 ♀ 1 July 1993; previously reported from Norway (Strand 1906, 1913, Roman 1936, Jussila 1973).

84 *Pimpla spuria* Gravenhorst, 1829

85 *Pimpla turionellae turionellae* (Linne, 1758)

*86 *Pimpla wilchristi* Fitton, Shaw & Gauld, 1988
RY Karmøy: Vea. (EIS 13), 1 ♀ 22 August 1993; known from Britain, the distribution of this newly described species is unknown.

90 Seropus stercorator (Fabricius, 1793)
AK Bærum: Vestmarka (EIS 28), 1 ♀ 29 July 1992, found previously in Norway (Roman 1942, Jussila 1976a).

91 Liotryphon crassisetus (Thomson, 1877)

92 Paraperithous gnathaulax (Thomson, 1877)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 30 June 1993, known from Norway (Jussila 1976a).

93 Scambus (Endromopoda) arundinator (Fabricius, 1804)
Ø Fredrikstad: Torsnes/Nes (EIS 20), 1 ♀ 17 June 1993, recorded from Norway (Jussila 1976a).

94 Scambus (Endromopoda) detrita (Fabricius, 1793)

95 Scambus (Ateleophadnus) nigricans (Holmgren, 1856)
AAY Arendal: Tromøy (EIS 6), 1 ♀ 6 October 1993, reported from Norway (Roman 1936, Jussila 1973).

96 Scambus s.str. annulatus (Kiss, 1924) [syn. nucum auct. nec Ratzeburg]
AAY Arendal: Tromøy (EIS 6), 1 ♀ 6 October 1979, reported from Norway (Roman 1936, 1942).

97 Scambus s.str. brevicornis (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 30 June 1993; AK Bærum: Borøy (EIS 28), 1 ♀ 10 August 1993; TEY Nome: Ulefoss (EIS 18), 1 ♀ 31 July 1993, known from Norway (Strand 1900, 1913, Roman 1973).

98 Scambus s.str. buolianae (Hartig, 1838)

99 Scambus s.str. vescarius (Ratzeburg, 1844)

*100 Tromatobia oculatoria (Fabricius, 1798)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 1 June 1992; widespread in Europe (Aubert 1969).

101 Tromatobia ovivora (Boheman, 1821)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 10 October 1993; BØ Drammen: Sausesætra (EIS 28), 1 ♀ 3 October 1992; widespread in Europe, recorded earlier from Norway (Ulbricht 1912, Strand 1913).

102 Polysphinctini

102 Acrodactyla degener (Haliday, 1838)
AK Askern: Båstad (EIS 28), 1 ♀ 7 October 1993, reported from Norway (Jussila 1973).

103 Acrodactyla quadricincta (Gravenhorst, 1820)
Ø Fredrikstad: Borge, Borge Varde (EIS 20), 1 ♀ 21 August 1992; known from Norway (Strand 1913).

104 Oxyrhitis carbonator (Gravenhorst, 1807)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 26 June 1988 and 2 ♀ 1 and 10 June 1992, known from Norway (Strand 1913, Roman 1942, Jussila 1976a).

*105 Schizopyga circulator (Panzer, 1801)

*106 Zatypota bohemani (Holmgren, 1856)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 10 August 1993; widespread in Europe (Aubert 1969).

*107 Zatypota discolor (Holmgren, 1860)
TEI B0 (EIS 17), 1 ♀ 31 July 1993; known from Northern and Central Europe (Aubert 1969).

108 Zatypota percontatoria (Müller, 1776) [syn. gracilis Holmgren, 1860]
Ø Fredrikstad: Onsøy, Mærrapanna (EIS 20), 1 ♀ 26 August 1992, widespread in Europe and recorded from Norway (Strand 1898).

Poemenini

109 Poemenia hectica (Gravenhorst, 1829) [syn. tiparia Holmgren, 1860]
OS Gran: Buhammeren (EIS 36), 1 ♀ 7 July 1991, known from Northern and Central Europe, recorded from Norway (Strand 1898).

ICHNEUMONINAE

Listrodromini

*110 Anisobas cingulatorius (Gravenhorst, 1820)

Coelichneumonini

111 Coelichneumon deliratorius (Linné, 1761)
AAY Grimstad: Søm (EIS 6), 1 ♀ 5 July 1987; recorded from Norway (Jussila 1976a).

*112 Coelichneumon falsificus (Wesmael, 1844)
NTI Lierne: S Furusjøen (EIS 108), 1 ♀ 31 July 1993; known from Northern and Central Europe.

113 Coelichneumon nigerinus (Stephens, 1835) [syn. deroes Wesmael, 1844]
BØ Hurum: Mølen (EIS 19), 1 ♀ 14 July 1989; known from Norway (Strand 1913, Roman 1942).
*114 Coelichneumon serenus (Gravenhorst, 1829)

115 Protichneumon fusorius (Linné, 1758)
AAY Grimstad (EIS 6), 1 ♂ 5 July 1987; recorded from Norway (Strand 1898).

116 Protichneumon pisorius (Linné, 1758)
AK Asker: Nesøya (EIS 28), 1 ♀ 16 June 1993; known from Norway (Roman 1942, Jussila 1976a).

Ichneumonini

117 Aoplus ruficeps (Gravenhorst, 1829)

118 Barichneumon peregrinator (Linné, 1758)

119 Chasmias motatorius (Fabricius, 1775)
Ø Fredrikstad: Torsnes (EIS 20), 1 ♀ 27 March 1992; found in Norway (Jussila 1976a).

120 Craticheumon fabricator (Fabricius, 1793)
Ø Fredrikstad: Osenøy, Engelsviken (EIS 20), 1 ♀ 3 October 1987, found throughout Norway (Strand 1900, 1913, Roman 1936, Jussila 1976a).

121 Craticheumon rufifrons (Gravenhorst, 1829)

122 Craticheumon viator viator (Scopoli, 1763) [syn. nigrarius Gravenhorst, 1820]

123 Ctenichneumon castigator (Fabricius, 1793)
VE Tjome: Hvasser syd (EIS 19), 1 ♂ 6 June 1992, previously reported from Norway (Strand 1906).

*124 Ctenichneumon divisorius (Gravenhorst, 1820)

125 Diphyus amatorius (Müller, 1776)
AK Oslo: Neklevann, Kattisa (EIS 28), 1 ♂ 1 August 1985; VE Larvik: Hedrum, Vestmarka (EIS 19), 1 ♂ 31 July 1983; known from Norway (Strand 1898, Jussila 1976a).

*126 Diphyus ochromelas (Gmelin, 1790) [syn. pulchellus Christ, 1791]
AK Asker: Bleiker (EIS 28), 1 ♀ 23 September 1989, widespread in Europe.

127 Hippiopelma melanogaster (Gmelin, 1790)
VE Larvik: Hedrum, Vestmarka (EIS 19), 1 ♂ 29 July 1983, previously found in Norway (Roman 1942).

128 Ichneumon bucculentus bucculentus Wesmael, 1844
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 7 June 1988; recorded from Norway (Strand 1906, Jussila 1976a).

129 Ichneumon confusor Gravenhorst, 1829

130 Ichneumon extensorius Linné, 1758

131 Ichneumon gracilicentus Wesmael, 1844
Ø Fredrikstad: Borge, Borge Varde (EIS 20), 1 ♀ 26 April 1985; Ø Fredrikstad: Gansrød (EIS 20), 1 ♂ 26 August 1991; known from Norway (Strand 1913, Roman 1942, Jussila 1976a).

132 Ichneumon lapponicus Wesmael, 1855

133 Ichneumon luteipes Wesmael, 1855

134 Ichneumon sarmatorius sarmatorius Linné, 1758
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 18 July 1990, previously known from Norway (Strand 1898, Jussila 1976a, Hilpert 1992).

135 Ichneumon simulans Holmgren, 1879
[syn. variolosus]
Ø Fredrikstad: Borge, Borge Varde (EIS 20), 1 ♀ 21 August 1992; widespread in Europe, known from Norway (Strand 1913, Roman 1942).

136 Ichneumon stramentarius stramentarius Gravenhorst, 1820
137 **Ichneumon suspiciosus** Wesmael, 1844
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 10 November 1988; AK Fet: Gan (EIS 37), 1 ♀ 15 April 1991; recorded from Norway (Roman 1942, Jussila 1976a).

138 Limerodops elongatus (Brischke, 1878)
Ø Sarpsborg: Skjeberg, Blåkollen (EIS 20), 1 ♂ 4 September 1992; known from Central Europe.

139 **Stenaoplus pictus** Gravenhorst, 1829 [syn. *ratzeburgi* Hartig, 1838]
VE Tjøme: Sønstegård (EIS 19), 1 ♀ 6 June 1992, recorded from Norway (Strand 1913, Jussila 1976a).

140 Stenichneumon culpator (Schrank, 1802)
Ø Aremark: Bøensætre (EIS 21), 1 ♂ 18 July 1992; widespread in Europe.

141 Virgichneumon tergenus (Gravenhorst, 1820)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 25 February 1993; previously known from Central Europe.

142 **Vulgichneumon suavis** (Gravenhorst, 1820) [syn. *lepidus* Gravenhorst, 1829]
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 25 February 1993; previously known from Central Europe.

Eurylabini

*143 **Eurylabus torvus** Wesmael, 1844
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 7 September 1987; VE Tjøme: Hvasser syd (EIS 19), 1 ♀ 6 June 1992; known from Central Europe.

144 Eurylabus tristis (Gravenhorst, 1829)
AK Asker: Fusal (EIS 28), 1 ♂ 27 June 1993; widespread in Europe.

*145 **Probolus concinnus** Wesmael, 1853
VAY Kristiansand: Kuholmen (EIS 2), 1 ♀ 30 August 1976; widespread in Northern and Central Europe.

146 **Probolus culpatorius** (Linné, 1758)

Platylabini

*147 **Apaelecticus bellicosus** Wesmael, 1844
TEY Nome: Ulefoss (EIS 18), 1 ♂ 31 July 1993; found in Northern and Central Europe.

148 Apaelecticus mesostictus (Gravenhorst, 1829)
Ø Hvaler: Kirkøy, Ørekroken (EIS 12), 1 ♂ 12 July 1992; widespread in Europe.

149 **Platylabus pedatorius** (Fabricius, 1793)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 10 October 1993; known from Norway (Strand 1898, Jussila 1976a).

150 Platylabus rufiventris Wesmael, 1844
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 1 November 1992, found in Northern and Central Europe.

Phaeogenini

151 **Aethecerus nitidus** Wesmael, 1844
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 10 July 1992, previously recorded from Norway (Strand 1913).

152 Centeterus confector (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 25 August 1993; distributed throughout Europe.

153 **Dirophanes (Phaeogenes auct.) invisor** (Thunberg, 1822)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 12 April 1991; known from Norway (Jussila 1976a).

154 **Misetus oculatus** Wesmael, 1844
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 10 August 1993, known from Norway (Roman 1936).

155 Oiorhinus pallipes Wesmael, 1844
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 18 August 1993; known from Finland and Central Europe.

156 **Phaeogenes s.str. melanogonos** (Gmelin, 1790)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 25 August 1993; VE Larvik: Mølen (EIS 11) 1 ♀ 12 June 1993; previously recorded from Norway (Strand 1906, 1913, Jussila 1976a).

157 Tycherus (Phaeogenes auct.) coriaceus (Perkins, 1953)
Ø Sarpsborg: Tune, Råkil (EIS 20), 2 ♀ 10-11 May 1993; known from Northern and Central Europe.

MESOCHORINAE

158 **Mesochorus fulgurans** (Curtis, 1838)

159 **Mesochorus punctipleuris** Thomson, 1885

* 160. **Mesochorus semirufus** Holmgren, 1858
TEI Bø: Bø sentrum (EIS 18), 1 ♀ 8 September 1992, found in Northern and Central Europe.

METOPIINAE

161 **Chorinaeus funebris** (Gravenhorst, 1829)
Ø Fredrikstad: Borge, Persnes (EIS 20), 1 ♂ 9 July 1993, reported from Norway (Strand 1900, 1906, 1913).

162 Colpotrochia cincta (Scopoli, 1763)
HES Sor-Odal: Skarnes (EIS 37), 1 ♂ 3 September 1989; BØ Røyken: Kinnartangen (EIS 28), 1 ♂ 24 July 1993, widespread in Northern and Central Europe.
163 *Exochus gravipes* (Gravenhorst, 1820)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 10 August 1993. Widespread in Europe, known from Norway (Strand 1906, Roman 1936, Jussila 1976a).

164 Exochus lenitipes Gravenhorst, 1829

165 Exochus mitralis australis Thomson, 1895
Fredrikstad: Borge, Gansrød (EIS 20), 1 ♂ 0 24 July 1993. Widespread in Europe.

166 Exochus nigripalpis nigripalpis Thomson, 1887
AAY Arendal: Tromøy, Hove (EIS 6), 1 ♂ 0 2 August 1992, found in Northern and Central Europe.

167 Exochus pictus pictus Holmgren, 1856

168 Metopius (Ceratopius) fuscipennis (Wesmael, 1849)
YE Larvik: Kloppsand (EIS 19), 1 ♂ 11 June 1993. Widespread in Europe, known from Sweden and Finland.

169 Triclistus longicalcar Thomson, 1887
AAY Arendal: Tromøy, Hove (EIS 6), 1 ♂ 2 August 1992, found in Northern and Central Europe.

170 Trieces facialis (Thomson, 1887)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 28 July 1993, previously recorded from Southern Sweden.

OPHIONINAE

171 *Enicospilus ramidulus* (Linne, 1758)

172 *Ophion luteus* (Linne, 1758)

173 *Ophion obscuratus* Fabricius, 1798

174 *Ophion parvulus* Kriechbaumer, 1879
BØ Nedre Eiker: Hagatjern (EIS 28), 1 ♂ 18 September 1992, reported from Norway (Wiig 1982).

175 *Ophion pteridis* Kriechbaumer, 1879

176 *Ophion scutellaris* Thomson, 1888
AAY Grimstad: Søm (EIS 6), 1 ♂ 8 May 1986, known from Norway (Wiig 1982).

ORTHOCENTRINAE

177 *Orthocentrus frontator* (Zetterstedt, 1838) [syn. repentinus* Holmgren, 1856]
Ø Fredrikstad: Gansrød (EIS 20), 1 ♂ 13 May 1992, known from Norway (Strand 1906, 1913, Jussila 1973, 1976a).

OXYTORINAE

178 *Aniseres pallipes* Förster, 1871
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 4 September 1988. Known from Central Europe, probably found in Norway previously (Roman 1942).

179 *Cylloceria caligata* (Gravenhorst, 1829)
HOI Ulvik: Finse (EIS 42), 1 ♂ 18 July 1991; found throughout Norway (Ulbricht 1912, Strand 1913, Roman 1942).

180 *Cylloceria melancholica* (Gravenhorst, 1820)

181 *Cylloceria sylvestris* (Gravenhorst, 1829) [syn. striolata* Hellén, 1915]*
FV Måsøy: Rolvsøy, Gargo (EIS 186), 1 ♂ 19 July 1992, previously recorded from Norway (Jussila 1973).

182 *Megastylus suecicus* Van Rossem, 1983
Differs from the original description by its black face with two small yellow streaks below the antennal sockets, otherwise similar to the description of the type.
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 7 July 1993, known from Sweden and Netherlands (Van Rossem 1983).

183 *Pantisarthrus lubricus* (Förster, 1871) [syn. inaequalis* Förster, 1871]*
PHYGADEUONTINAE (GELINAE sensu Townes)

Mesostenini

184 Acrocrinus stylator (Thunberg, 1822) [syn. macrobatus (Fabricius, 1794)]
VE Larvik: Tagtvært (EIS 19), 1 ♀ 24 June 1983, recorded from Norway (Strand, 1898).

185 Agrothereutes abbreviatus (Fabricius, 1794) [syn. abbreviatus (Fabricius, 1798)]
BØ Drammen: Saueætra (EIS 28), 1 ♀ 3 October 1992, previously known from Norway (Strand 1898, 1913, Roman 1936, Jussila 1973).

*186 Agrothereutes grossus (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkål (EIS 20), 1 ♀ 18 June 1993; widespread in Northern and Central Europe.

*187 Aritranis fugitiva (Gravenhorst, 1829)
BØ Hurum: Verket, Verksøya (EIS 28), 1 ♀ 18 June 1989; known from Northern and Central Europe.

188 Ischnus migrator (Fabricius, 1775)
AK Bærum: Bærumsmarka (EIS 28), 1 ♀ 28 April 1990; AK Asker: Vardåsen (EIS 28), 1 ♀ 30 March 1990, recorded from Norway (Strand 1900, 1913, Roman 1936, 1942, Jussila 1973).

189 Itamoplex (Cryptus auct.) armator (Fabricius, 1804)

190 Itamoplex (Cryptus auct.) titubator (Thunberg, 1822)

191 Itamoplex (Cryptus auct.) viduatorius (Fabricius, 1804)

192 Pycnocryptus director (Thunberg, 1822)
Ø Sarpsborg: Tune, Råkål (EIS 20), 1 ♀ 31 May 1993; AK Bærum: Østaya (EIS 28), 1 ♀ and 1 ♂ 23 May 1992; AK Asker: Vardåsen (EIS 28), 1 ♀ 6 June 1993; reported earlier from Norway (Strand 1906, 1913, Jussila 1976a).

193 Sphecophaga vesparum vesparum Curtis, 1840
Ø Sarpsborg: Tune, Råkål (EIS 20), 1 ♀ 22 May 1992; AK Bærum: Borøya (EIS 28), 2 ♀ 20 June 1993; known from Norway (Roman 1942, Jussila 1976a).

*194 Stenarella domator domator (Poda, 1761) [syn. gladiator Scopoli, 1763]

195 Trychosis legator legator (Thunberg, 1822)
Ø Sarpsborg: Tune, Råkål (EIS 20), 1 ♀ 10 August 1993; AK Bærum: Østøya (EIS 28), 1 ♀ 23 May 1992; VE Sande: Bjørkøya (EIS 19), 1 ♀ 27 May 1989, recorded from Norway (Strand 1906, Roman 1942, Jussila 1976a).

Hemigasterini (=Aptesini)

196 Aptesis nigrocinctus (Gravenhorst, 1829)

197 Cubocephalus distinctor (Thunberg, 1822)
Ø Sarpsborg: Tune, Råkål (EIS 20), 1 ♀ 30 June 1993, found in Norway (Roman 1936).

198 Cubocephalus nigriventris (Thomson, 1896)
AAY Arendal: Nidelven (EIS 6), 1 ♀ 8 July 1992; known from Norway (Strand 1913, Roman 1936).

199 Eccthrus reluctator (Linné, 1758)
VE Tjome: Hvasser (EIS 19), 1 ♀ 7 June 1993; previously reported from Norway (Jussila 1976a).

200 Giraudia gyratoria (Thunberg, 1822)
Ø Sarpsborg: Tune, Råkål (EIS 20), 1 ♂ 19 July 1988, 1 ♂ 26 June 1988, 1 ♂ 5 July 1989; widespread in Europe, reported from Norway (Strand 1906).

201 Pleolophus basizonius (Gravenhorst, 1829)
Ø Fredrikstad: Borge, Borge Varde (EIS 20), 1 ♀ 10 September 1992, found in Norway (Strand 1913, Roman 1942, Jussila 1976a).

202 Polytribax arrogans (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkål (EIS 20), 1 ♂ 1 July 1991; AK Bærum: Tanum (EIS 28), 1 ♂ 5 June 1992; previously reported from Norway (Strand 1898, Roman 1942, Jussila 1973).

Phygaedeontini

*203 Amphibulus gracilis Kriechbaumer, 1893

204 Atacodes arator (Haliday, 1838)
Ø Sarpsborg: Tune, Holleby (EIS 20), 1 ♂ 12 June 1993, previously found in Norway (Jussila 1979).
205 Bathythrix fragilis (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkild (EIS 20), 2♀ 18 August 1993; widespread in Europe, known from Sweden and Finland (Sawoniewicz 1980).

206 Bathythrix striigosus (Thomson, 1884)
Ø Sarpsborg: Tune, Råkild (EIS 20), 1♀ 28 July 1993. Previously found in Norway (Strand 1913).

207 Dichrogaster aestivalis (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkild (EIS 20), 1♀ 7 July 1993; known from Norway (Strand 1913).

208 Dichrogaster longicaudata (Thomson, 1884) [syn. *diatropus* Townes, 1983]
Ø Sarpsborg: Visterområdet (EIS 20), 1♀ 31 August 1992; Ø Rakkestad: Buerbakkene (EIS 20), 1♂ 29 May 1993, known from North and Central Europe, holarctic (Townes 1983).

209 Dichrogaster modesta (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkild (EIS 20), 2♀ 25 August 1993; AK Bærum: Borøya (EIS 28), 1♀ and 1♂ 10 August 1993; TEI Bø: Verpe (EIS 17), 1♀ 1 August 1993; found in Northern and Central Europe.

210 Endasys analis (Thomson, 1883)
AK Asker: Risenga (EIS 28), 1♂ 4 June 1989; known from Norway (Strand 1913).

211 Endasys plagiator (Gravenhorst, 1829)
BØ Røyken: Hyggen, Kinnartangen (EIS 28), 1♂ 17 June 1989; widespread in Europe, known from Sweden and Finland (Sawoniewicz and Luhman 1992).

212 Endasys thunbergi Sawoniewicz and Luhman, 1992 [syn. *rubricator* Thunberg, 1822 praeocc.]
Ø Sarpsborg: Tune, Råkild (EIS 20), 1♀ 7 June 1993; found in Sweden, Denmark, Finland, and Central Europe.

213 Gelis areator (Panzer, 1804)

214 Glyphicnemis profligator (Fabricius, 1775)
Ø Sarpsborg: Tune, Råkild (EIS 20), 1♂ 18 July 1993; reported from Norway (Roman 1942, Jussila 1976a).

215 Lochetica westoni (Bridgman, 1880)
Ø Sarpsborg: Tune, Råkild (EIS 20), 2♀ and 1♂ 30 June 1993. Widespread in Europe.

216 Phygdaevon vagans Gravenhorst, 1829

217 Rhembobius perscrutator (Thunberg, 1822) [syn. *nigratus* Gravenhorst, 1829]
Ø Sarpsborg: Tune, Råkild (EIS 20), 2♀ 25 April 1993 and 3 May 1993; known from Norway (Roman 1942).

218 Stilpnus subzonulus Förster, 1876
AK Asker: Båstad (EIS 28), 1♂ 10 October 1993; reported from Norway (Jussila 1973).

PORIZONTINAE

219 Campoletis (Anilastus) holmgreni (Tschek, 1871)

220 Campoletis (Anilastus) latrator (Gravenhorst, 1829)

221 Campoplex borealis Zetterstedt, 1838

222 Cymodusa cruentata (Gravenhorst, 1829)
Ø Sarpsborg: Tune, Råkild (EIS 20), 2♀ 10 October 1993; widespread in Europe.

223 Diadegma areolaris (Holmgren, 1860)
Ø Sarpsborg: Tune, Råkild (EIS 20), 1♀ 28 May 1993; known from Norway (Strand 1913).

224 Diadegma combinata (Holmgren, 1860)
FN Porsanger: Gåradak (Goarahat) (EIS 174), 1♀ 27 June 1992, widespread in Northern and Central Europe (Horstmann 1969).

225 Diadegma erucator (Zetterstedt, 1838)
AK Bærum: Vestmarka (EIS 28), 1♀ 29 July 1992. Probably found earlier in Norway (Strand 1913: as *Angitria rupeps*).

226 Diadegma majalis (Gravenhorst, 1829)

227 Diadegma neomajalis Horstmann, 1969
VAY Kristiansand: Buene (EIS 2), 1♀ 26 April 1980; known from Germany and Sweden.

228 Diadegma trochanterata (Thomson, 1887)

229 Diadegma sordipes (Thomson, 1887)
Ø Sarpsborg: Tune, Råkild (EIS 20), 1♀ 12 June 1988, previously reported from Norway (Jussila 1976a).

230 Dusona nidulator (Fabricius, 1804)
ON Dovre: Dombås (EIS 71), 1♀ 26 May 1992, widespread in Northern and Central Europe.

231 Dusona pulchripes (Holmgren, 1872)
Ø Hvaler: Akerøya (EIS 12), 1♀ 29 May 1993; found in Northern and Central Europe.
232 Dusona stragifex (Forster, 1868)

233 Dusona tenuis (Forster, 1868)
♀ Sarpsborg: Tune, Rakil (EIS 20), 1 ♀ 10 June 1992; found previously in Norway (Strand 1913, Roman 1942).

234 Dusona terebrator (Forster, 1868)
♀ Fredrikstad: Øra (EIS 20), 1 ♀ 20 May 1993, known from Norway (Roman 1942).

235 Enytus apostata (Gravenhorst, 1829)
♀ Arendal: Moland, Eydehavn (EIS 6), 1 ♀ and 1 ♂ 24 June 1978 ex Scythropia crataegella (Linne, 1767) (Lepidoptera: Yponomeutidae); reported from Norway (Strand 1906, Roman 1942, Jussila 1973, 1976a).

236 Sinophorus turionus (Ratzeburg, 1844) [syn. planiscapus Thomson, 1887]

*237 Tranosemella completa (Horstmann, 1973)

TERSILOCHINAE

*239 Barycnemis alpina (Strobl, 1901)
♂ Lom: Memurudalen, 1200 m.a.s.l. (EIS 61), 1 ♂ 26 August 1989, known from Sweden and the Alps (Horstmann 1981).

240 Barycnemis bellator (Müller, 1776)
♂ Sarpsborg: Tune, Rakil (EIS 20), 1 ♀ 13 August 1993; FN Tana: Darjåkkskaidi, 320-450 m.a.s.l. (EIS 175), 1 ♀ 16 July 1990, previously recorded from Norway (Horstmann 1981).

241 Barycnemis gravipes (Gravenhorst, 1829)
♂ Sarpsborg: Tune, Rakil (EIS 20), 1 ♂ 29 August 1993; found in Norway (Strand 1906).

242 Barycnemis harpura (Schrank, 1802)

243 Tersilochus (Gonolochus) caudatus Holmgren, 1860
♂ Aremark: Bøensetra (EIS 21), 1 ♀ 15 May 1993, known from Southern Norway (Horstmann 1971).

244 Tersilochus jocator Holmgren, 1858
♂ Sarpsborg: Tune, Rakil (EIS 20), 1 ♀ 8 May 1993; reported from Norway (Horstmann 1971).

*245 Tersilochus subdepressus Thomson, 1889
♂ Sarpsborg: Skjeberg, Grimsøy (EIS 20), 1 ♀ 22 April 1992; widespread in Northern and Central Europe (Horstmann 1981).

TRYPHONINAE

Phytodietini

*246 Phytodietus albipes Holmgren, 1860
♂ Moss: Jegøy, Reierbukta (EIS 19), 1 ♀ 30 August 1992; AK Asker: Vardåsen (EIS 28); 1 ♀ 7 August 1993, found in Sweden.

247 Phytodietus arcuatorius (Thunberg, 1822)
♂ Fredrikstad: Torsnes/Nes (EIS 20), 1 ♀ 15 May 1992, known from Norway (Roman 1942).

248 Netelia (Bessobates) cristatus (Thomson, 1888)

249 Netelia (Bessobates) latungula (Thomson, 1888)

250 Netelia (Bessobates) virgata (Fourcroy, 1785)

251 Netelia melanurus (Thomson, 1888)
♂ Sarpsborg: Tune, Rakil (EIS 20), 1 ♀ 11 September 1989; AK Asker: Båstad (EIS 28) 1 ♂ 9 August 1993 and 1 ♀ 19 August 1993; widespread in Europe, probably found in Norway (Roman 1942).

252 Netelia ocellaris (Thomson, 1888)
♀ Hvaler: Akerøya (EIS 12), 1 ♀ 6 June 1992, recorded from Norway (Delrio 1974).

*253 Netelia opaculus (Thomson, 1888)

Thymaridini

*254 Cladeutes discedens (Woldstedt, 1872)
♂ Sarpsborg: Tune, Rakil (EIS 20), 1 ♀ 20 April 1988 and 1 ♀ 25 April 1993, a rare species, known from Finland and Austria.
255 Thymaris tener (Gravenhorst, 1829)
Ø Fredrikstad: Borge, Borge Varde (EIS 20), 3 ♀ 21 August 1992;

Exenterini

256 Eridolius (Anisocorix) alacer (Gravenhorst, 1829)
Ø Sarpsborg: Skjeberg, Skjebergdalen (EIS 20), 1 ♀ and 2 ♂ 25 September 1992; Ø Sarpsborg: Tune, Råkil (EIS 20), 2 ♂ 8 October 1990; Ø Sarpsborg: Tune, Jelsnes (EIS 20), 1 ♂ 20 September 1992 and 1 ♂ 1 August 1992; known from Central Europe and Sweden (Ker- rich 1952).

257 Eridolius pygmaeus Holmgren, 1855
SFI Vik: Framfjord (EIS 50), 1 ♂ 17 July 1991; previously reported from Norway (Roman 1936, Jussila 1973).

258 Exenterus abruptorius (Thunberg, 1822)

259 Exenterus amictorius (Panzer, 1801)
Ø Sarpsborg: Tune, Tunevannet (EIS 20), 1 ♀ 16 June 1991, found in Norway (Strand 1900, 1919, Roman 1936).

260 Exenterus ictericus (Gravenhorst, 1829)
RY Karmøy: Yea (EIS 13), 1 ♀ and 1 ♂ 22 August 1993; previously reported from Norway (Strand 1913, Roman 1942).

261 Smicroplectrus jucundus jucundus (Holmgren, 1855)
FN Tana: Darjåkkskaidi, 320-450 m.a.s.l. (EIS 175), 1 ♀ 16 July 1990, recorded earlier from Norway (Jussila 1973, 1976a).

Tryphonini

262 Cosmoconus elongator (Fabricius, 1775)
AK Oslo: Skullerud (EIS 28), 1 ♂ 17 August 1989, previously known from Norway (Strand 1906, Jussila 1976a, Roman 1942).

263 Cosmoconus meridianator Aubert, 1963
Ø Sarpsborg: Skjeberg, Skjebergdalen (EIS 20), 1 ♂ 13 July 1993; Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 25 August 1993; Ø Fredrikstad: Onsey, Mørrapanna (EIS 20), 1 ♂ 26 August 1992; AK Asker: Vardåsen (EIS 28), 1 ♀ 28 August 1993, widespread in Central Europe and found in Finland (Kasparyan 1973).

264 Cosmoconus ceratophorus Thomson, 1888
SFI Vik: Framfjord (EIS 50), 1 ♂ 17 July 1991, previously known from Norway (Jussila 1976a).

265 Ctenochira marginata Holmgren, 1855
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 12 September 1992; recorded from Norway (Strand 1906, 1913).

266 Ctenochira sphaerocephala (Gravenhorst, 1829)
RY Karmøy: Vea (EIS 13), 1 ♀ 22 August 1993; known from Northern and Central Europe.

267 Dyspetes arrogator Heinrich, 1949 [syn. praerogator auct. nec Linne]

Polyblastos variatus (Gravenhorst, 1829)
Ø Aremark: Vestfjella (EIS 21), 1 ♀ 29 August 1992, previously recorded from Norway (Strand 1906, 1913, Roman 1942).

269 Tryphon s.str. auricularis Thomson, 1883
Ø Sarpsborg: Skjeberg, Skjebergdalen (EIS 20), 1 ♀ 28 July 1993, Ø Rakkestad: Sólje (EIS 20), 1 ♀ 21 July 1991; known from Norway (Roman 1942).

270 Tryphon s.str. thomsoni Roman, 1939 [syn. vulgaris auct. nec Linne]
Ø Sarpsborg: Tune, Jelsnes (EIS 20), 1 ♀ 2 July 1993; reported from Norway (Strand 1906, 1913, Jussila 1976a).

271 Tryphon (Stenocrotaphon) obtusator (Thunberg, 1822)
Ø Sarpsborg: Skjeberg, Grimsøy (EIS 20), 1 ♂ 10 August 1993; previously reported from Norway (Strand 1913, Roman 1942, Jussila 1976a).

272 Tryphon (Symboethus) bidentatus Stephens, 1835 [syn. incestus Holmgren, 1855]

273 Tryphon (Symboethus) bruniventeris Gravenhorst, 1829

274 Tryphon (Symboethus) duplicatus var. discedens (Heinrich, 1953)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♀ 30 June 1993, known from Central Europe and Siberia (Kasparyan 1973).

275 Tryphon (Symboethus) hinzi (Heinrich, 1953)
Ø Sarpsborg: Tune, Råkil (EIS 20), 1 ♂ 18 June 1992, known from Germany and Russia (Kasparyan 1973).
DISCUSSION

Whereas Roman (1936, 1942) and Jussila (1973, 1976a, 1976b) mostly worked with material from Northern Norway as well as the Western coast and mountains of Southern Norway, most of the material included in the present study was collected in the lowlands of Southeastern Norway. This area has a more continental climate with drier and hotter summers and is known to have the highest number of species in the country for several insect groups. Many of the species newly recorded from Norway in this paper are widespread throughout Central Europe. This pattern of distribution is also found in most species of Lepidoptera - a major hostgroup for the Ichneumonidae - occurring in the Southeastern lowlands of Norway.

ACKNOWLEDGEMENTS

For the generous loan of their ichneumonid material we would like to thank Thor Jan Olsen in particular and also Kai Berggren, Jostein Engdal, Harald Hjelde, Ole Lønne, Jan Arne Stenløkk and Per Tangen.

SAMMENDRAG

Funn av norske Ichneumonidae (Hymenoptera)

Funn av 275 arter snylteveps av familien Ichneumonidae er omtalt, 78 av disse artene er ikke tidligere publisert fra Norge. De fleste funn er gjort i lavlandet på Østlandet. Familien er lite undersøkt i Norge.

REFERENCES

XIth European Congress of Lepidopterology
B-2390 Malle Belgium
22 - 26 March 1998

First announcement

The XIth European Congress of Lepidopterology will be organised by the Societas Europaea Lepidopterologica (SEL) in the “Provinciaal Vormingscentrum Malle”, at about 25 km NE Antwerpen, Belgium, from Sunday 22 to Thursday 26 March 1998.

Plenary sessions:
Conservation biology
Ecology and population biology
Field reports and faunistics
Systematics and phylogeny
Zoogeography and biodiversity

Parallel sessions / Workshops:
Computer workshop
Microlepidoptera
Noctuidae
Pest control
Tropical Lepidoptera

Registration form and details:
Dr. Ugo Dall’Asta
Royal Museum for Central Africa
B-3080 Tervuren (Belgium)
Tel.: +32.2.769.5373
Fax: +32.2.769.5695
e-mail: selcon98@africamuseum.be
Contribution to the knowledge of the Norwegian Lepidoptera V

Leif Aarvik, Sigurd A. Bakke, Yngvar Berg, Kai Berggren, Lars Ove Hansen, Kai Myhr & Svein Svendsen

The following 45 species are reported new to Norway: Stigmella sakhalinella Puplesis, 1984, Stigmella microtheriella (Stainton, 1854), Stigmella centifoliella (Zeller, 1848), Stigmella ulmivora (Fologne, 1860), Stigmella basiguttella (Heinemann, 1862), Ectoedemia albibimaculella (Larsen, 1927), Ectoedemia intimella (Zeller, 1848), Lampronia redimitella Zeller, 1846, Karsholtia marianii (Rebel 1936), Monapis monachella (Hübner, 1796), Bucculatrix lativaelia Sulees, 1990, Pseudoswammerdamia combinella (Hübner, 1786), Stephensia brunichella (Linnaeus, 1767), Elachista quadripunctella (Hübner, 1825), Elachista compsa Traugott-Olsen, 1974, Elachista esoki Kyrki & Karvonen, 1985, Biselachista occidentalis (Frey, 1882), Coleophora vulnerariae Zeller, 1839, Coleophora lassella Staudinger, 1859, Hypatopa segnellla (Zeller, 1873), Atheta tetrapunctella (Thunberg, 1794), Gelechia cuneatella Douglas, 1852, Gnorimoschema herbichii (Nowicki, 1864), Gnorimoschema strenecella (Herrich-Schäffer, 1854), Caryocolum blandella (Douglas, 1852), Dichomeris latipennella (Rebel, 1937), Brachmia blanda (Fabricius, 1798), Acleris shephardana (Stephens, 1852), Aethes dilucida (Stephens, 1852), Dichelia histronana (Frölich, 1828), Lobesia absciscana (Doubleday, 1849), Notocelia trunculana (Haworth, 1811), Notocelia tethagonana (Stephens, 1834), Gypsonoma aceriana (Duponchel, 1843), Cydia inquinatana (Hübner, 1799), Pammene inquillina T. Fletcher, 1938, Pselephorus heterodactyla (Müller, 1764), Adaina microdactyla (Hübner, 1813), Elegia similleta (Zincken, 1818), Scoparia basistrigalis Knaaggs, 1866, Agriphila latisurta (Haworth, 1811), Timandra comai Schmidt, 1931, Eupithecia abbreviata Stephens, 1831, Orgyia antiquoides (Hübner, 1822) and Calamia tridens (Hufnagel, 1766). Notes on biology and distribution are briefly given for each species. Additionally, a number of species previously reported from Norway are for various reasons deleted from the Norwegian list.

INTRODUCTION

This article gives information on Lepidoptera collected new to Norway in recent years. In addition a couple of species discovered among older unidentified material are recorded. Some of these species are listed as Norwegian in the Swedish catalogue (Svensson et al 1994), but no details on their discovery in Norway have been published. The identifications of all specimens mentioned in the present paper have been checked by at least one of the authors. In the present paper we delete from the Norwegian list several species of which we are unable to trace voucher specimens or find other evidence of their occurrence in this country. Some species entered the list by virtue of error. They are also deleted. The following abbreviations are used in the text: NISK = Norsk institutt for skogforskning, Ås. ZMO = Zoologisk museum, Universitetet i Oslo.

Leif Aarvik, Nyborgveien 19 A, N-1430 Ås, Norway.
Sigurd A. Bakke, Nygårdsveien 63, N-1400 Ski, Norway.
Yngvar Berg, Grøbeinsletta 13, N-3030 Drammen, Norway.
Kai Berggren, Bråvann terrasse 21, N-4622 Kristiansand, Norway.
Lars Ove Hansen, University of Oslo, Zoological Museum, Sarsgt. 1, N-0562 Oslo, Norway.
Kai Myhr, Postboks G, N-2630 Ringebu, Norway.
Svein Svendsen, Riskestien 10 A, N-4635 Kristiansand, Norway.
SPECIES DELETED FROM THE NORWEGIAN LIST

Nepticulidae

In connection with the monograph of the Nepticulidae and Opostegidae of North West Europe (Johansson et al. 1990), all available Norwegian material of the family Nepticulidae was critically examined. It turned out to be impossible to confirm the occurrence in Norway of a number of species. This applies in particular to some species published by Nils Grønlien. In spite of this, all these species were still listed as Norwegian in the new edition of the Swedish catalogue (Svensson et al. 1994).

Stigmella tiliae (Frey, 1856)
Grønlien (1926) recorded the species from HOI, Granvin: Skjervet. The record could not be confirmed by Johansson et al. (1990).

Stigmella glutinosae (Stainton, 1858)
Grønlien (1937) recorded the species (as rubescens Heinemann) from TEY, Bamble. The record could not be confirmed by Johansson et al. (1990).

Stigmella alnetella (Stainton, 1856)
Listed as Norwegian by Krogerus et al. (1971). The record was not confirmed by Johansson et al. (1990).

Stigmella malella (Stainton, 1854)
Grønlien (1932) recorded the species from AAY, Risør. The record could not be confirmed by Johansson et al. (1990).

Stigmella catharticella (Stainton, 1853)
Grønlien (1932) recorded the species from AK, Oslo. The record could not be confirmed by Johansson et al. (1990).

Stigmella oxyacanthella (Stainton, 1854)
Grønlien (1932) recorded the species from TEY, Kragerø and AAY, Risør. The record could not be confirmed by Johansson et al. (1990).

Stigmella hybrerella (Hübner, 1796)
The statement in Johansson et al. (1990: 186) that Grønlien (1932) reported this species from Norway, is erroneous. Grønlien merely stated that hybrerella (as gratiosella Duponchel) had not yet been found in Norway. Still, S. hybrerella is erroneously listed as Norwegian by Svensson et al. (1994).

Stigmella plagicolella (Stainton, 1854)
Grønlien (1932) recorded the species from VE, Tønsberg: Frodeåsen. The record could not be confirmed by Johansson et al. (1990).

Stigmella hemargyrella (Kollar, 1832)
Grønlien (1932) recorded the species from Ø, Rygge: Larkollen and TEY, Bamble: Stathelle. The record could not be verified by Johansson et al. (1990).

Stigmella atricapitella (Haworth, 1828)
Grønlien (1932), without specifying any exact locality, recorded the species' occurrence in Norway could not be confirmed by Johansson et al. (1990).

Trifurcula eurema (Tutt, 1899)
Erroneously listed as Norwegian by Svensson et al. (1994).

Ectoedemia arcuataella (Herrich-Schäffer, 1855)
Grønlien (1937) recorded the species from HOI, Granvin: Skjervet. The record could not be verified by Johansson et al. (1990).

Adelidae

Nemophora cupriacaella (Hübner, 1819)
Erroneously listed as Norwegian by Svensson et al. (1994).

Tischeriidae

Tischeria marginella (Haworth, 1828)
Erroneously listed as Norwegian by Svensson et al. (1994).

Tineidae

Monopis imella (Hübner, 1813)
Haanshus (1933) listed imella from AK, and Opheim & Fjeldså (1983) from VAY. We cannot find correctly identified specimens from either of these two districts. In the collection of the Zoological Museum of Oslo specimens of Monopis laevigella (Denis & Schiffermüller, 1775) were misidentified as imella.
Gracillariidae
Caloptilia fidella (Reutti, 1853)
This species was published new to Norway by Opheim (1977) based on a specimen from AK, Bærum: Sandvika 15 Aug. 1934 E. Barca leg. When searching for this specimen in ZMO, it was found that it had been eaten by dermestids when kept in a cigar box at Opheim’s office. Opheim had dissected the specimen, and the genitalia had been stored in alcohol. The genitalia were now remounted as a permanent slide and embedded in euparal. They do not represent C. fidella, but are most probably Caloptilia semifascia (Haworth, 1828). In 1977 Opheim was unable to recognize the real C. semifascia. He misidentified another congener, C. hemidactylella (Denis & Schiffermüller, 1775), as semifascia. This explains why he had difficulties in identifying Barca’s specimen correctly.

Oecophoridae
Depressaria chaerophylli Zeller, 1839
Erroneously listed as Norwegian by Svensson et al. (1994).

Coleophoridae
Coleophora amellivora Baldizzone, 1979
Erroneously listed as Norwegian by Svensson et al. (1994).

Gelechiidae
Scrobipalpa artemisella (Treitschke, 1833)
Erroneously listed as Norwegian by Svensson et al. (1994).
Caryocolum cauligenella (Schmid, 1863)
Erroneously listed as Norwegian by Svensson et al. (1994).

Arctiidae
Eilema sororcula (Hufnagel, 1766)
Haanshus (1920) reported to have collected two specimens at AK, Nesodden: Spro on 14 June 1916 and 30 Jul. 1917 respectively. Opheim (1972) doubted this record. Probably Haanshus’ «sororcula» represents worn specimens of Eilema deplana (Esper, 1787). No sororcula specimens are present in the Haanshus collection which is preserved at the Zoological Museum in Oslo.

Noctuidae
Acronicta cuspis (Hübner, 1813)
Sparre Schneider (1882) claimed to have found a larva on Alnus at AAY, Tvedestrand: Nes Verk in 1873. Unfortunately the pupa died, and there is no material from Nes Verk to confirm the record. As there is no other specimens from Norway, we find it correct to delete the species from the Norwegian list.
Panemeria tenebrata (Denis & Schiffermüller, 1775)
Wocke (1864) stated that he found two specimens at HES, Hamar on 31 May 1962. This represents the only record from Norway. Sparre Schneider indicated that Wocke not always was careful in his notes on records. In his 1864 paper Wocke stated on page 173 that «Vanessa urticae, io und antiope flogen Ende Mai in überwinterten Exemplaren nicht selten bei Sigstadt und in Gudbrandsdalen». At this time the conspicuous Inachis io (Linnaeus, 1758) was not yet found in Norway. At Schøyen’s request Wocke had to admit he had no collected specimens, but thought that he had seen it. The first record of Inachis io was reported from AAY, Risør 35 years later (Sparre Schneider 1902). Similarly, we suspect that Wocke’s record of Panemeria tenebrata was not of collected specimens, and that he misidentified some other small moth species. Dr. Wolfram Mey of Zoologisches Museum der Humboldt-Universität zu Berlin kindly has informed us (by letter) that he could not find any Norwegian tenebrata specimens in the Staudinger/Wocke collection of that institution. There are a few old records of Panemeria tenebrata from the southernmost part of Sweden, and this represents the nearest records of the species. We consider it highly improbable that tenebrata really was collected in Norway, and so we delete it from the Norwegian list.

SPECIES NEW TO NORWAY
Nepticulidae
In the present paper we record species of Nepticulidae that are new to Norway relative to Johansson et al. (1990).
Stigmella sakhalinella Puplesis, 1984
AY, Arendal: Tromøy, Skottjern (EIS 6) 1 male 27 Jun. 1988 K. Berggren leg. & coll. The identification was verified by Roland Johansson.

S. sakhalinella is known from central Europe including Britain, Ireland, The Netherlands, southern Poland, western Russia, Austria, France, Switzerland, Hungary, Italy, eastern Russia and NE China (Johansson et al. 1990). It was collected for the first time in Sweden in the Stockholm area in 1990 (Svensson 1992). Previous records of this species from Scandinavia, under the name *Stigmella distinguida* Heinemann, 1862, are based on misidentifications.

Imago, genitalia and the larval mine are figured in Johansson et al. (1990).

The larva of *sakhalinella* is a leaf miner on various *Betula* species (Johansson et al. 1990).

Stigmella microtheriella (Stainton, 1854)
AK, Oslo: Manglerud (EIS 28) 1 female 27 Sept. 1984 rearred from mine on *Corylus avellana* L. Aarvik leg. & coll. Grønlien (1932) reported the species from Vestfold and Aust-Agder, but there seems to be no preserved specimens as this record was not confirmed by Johansson et al. (1990).

S. microtheriella is distributed throughout Europe to western Russia and Caucasus in the east and Italy and Greece in the south. In Sweden it has been recorded north to 62 northern latitude.

Imago, genitalia and the leaf mine on the host plant, *Corylus*, are figured in Johansson et al. (1990). The larva also mines the leaves of *Carpinus*.

Stigmella centifoliella (Zeller, 1848)

S. centifoliella is distributed in England and continental Europe; Mediterranean region, N. Africa and Canary Islands. In N Europe only from Copenhagen in Denmark and Gotland in Sweden (Johansson et al. 1990).

Host plants are various *Rosa* species and *Sanguisorba* (Johansson et al. 1990).

S. centifoliella is closely related to *S. anomalella* (Goeze, 1783) but differs in having a distinct white fascia. Imago, genitalia and the leaf mine are figured by Johansson et al. (1990).

Stigmella ulmivora (Fologne, 1860)
VAY, Kristiansand: Gimle (EIS 2) 4 specimens 10 Sept. 1994 rearred from leaf mines on *Ulmus glabra* K. Berggren leg. & coll. In 1993 several mines were found at this locality, but no imagines emerged. Grønlien (1932) reported having found mines of this species at HOI, Granvin and TEY, Porsgrunn: Brevik, but this record could not be confirmed (Johansson et al. 1990).

S. ulmivora is widely distributed throughout Europe; in N Europe from S Sweden north to Västmanland and in eastern Denmark (Johansson et al. 1990).

Imago, genitalia and leaf mines on the host plant, *Ulmus*, are figured by Johansson et al. (1990).

Stigmella basiguttella (Heinemann, 1862)

S. basiguttella is widely distributed in E, C and S Europe; in N Europe known from Denmark, two southern districts in Finland and in Sweden north to Västmanland (Johansson et al. 1990).

Imago, genitalia and the leaf mine on the host plant, *Quercus*, are figured by Johansson et al. (1990).

Ectoedemia albibimaculella (Larsen, 1927)
Ø, Hvaler: Asmaløy, Huser 1 male 3 Jul. 1994 L. Aarvik leg. & coll. This species is listed as Norwegian by Johansson et al. (1990), but there is no indication where it has been found.

The present record confirms the presence of this species in Norway.

According to Johansson et al. (1990) *E. albibimaculella* has been found in central Poland and Italy; in northern Europe it is known from two localities in Jutland, Denmark. It is widespread in Finland and Sweden.

Imago, genitalia and the leaf mine on the host plant, *Arctostaphylos uva-ursi*, are figured by Johansson et al. (1990).

Ectoedemia intimella (Zeller, 1848)
Ø, Sarpsborg: Sarpsborg (EIS 20) 1 male 21 Jun. 1922 E. Barca leg., ZMO coll.; AK, Ås: Vardåsen (EIS 28) 1 male 4 Jun. 1990 L. Aarvik leg. & coll.; VAY, Kristiansand: Stangenes (EIS 2) 2 females July 1992 S. Svendsen leg., K. Berggren coll. Grønlien (1937) recorded the mines of *intimella* from TEY, Bamble, but this record could not be confir-
med (Johansson et al. 1990). E. intimella occurs in most of Europe including Denmark and S Sweden and S Finland (Johansson et al. 1990).

Imago, genitalia and the leaf mine on the host plants, various Salix species, are figured by Johansson et al. (1990).

Prodoxidae

Lampronia redimitella Zeller, 1846

NSI, Saltadal: Rusånes (EIS 127) 1 female 26 Jun. 1992 K. Berggren & K. Myhr leg., K. Berggren coll. The species is known from Carelia in Russia (Zagulajev 1989); it is widely distributed in Finland north to the district Ostrobotnia borealis southern part (Kyrki 1978); in Sweden known from the three districts Södermanland, Uppland and Norrbotten (Svensson et al. 1994).

The male genitalia are figured by Zagulajev (1989), forewing and female genitalia by Benander (1953). A photo of the moth was published by Svensson (1993b).

The larva of redimitella develops in the buds of Ribes (Svensson 1993a).

Tineidae

Karsholtia marianii (Rebel, 1936) Figure 1

VAY, Kristiansand: Stangenes (EIS 2) 1 male 10 Jun. 1990, 1 male 28 Jun. 1990, 1 male 16 Jul. 1990 S. Svendsen leg., NISK coll., 1 female same locality and collector 12 Jul. 1990 K. Berggren coll. The specimens were collected indoors in a room with stored firewood. The wood originated from the forest close to the house.

This species is known from Sicily, S Sweden and Denmark only (Gaedike 1986). In Sweden it has been found in the districts Skåne, Småland and Öland (Svensson et al. 1994).

The genitalia of the moth are figured by Gaedike (1986).

In Denmark moths have been collected at dawn flying near old Corylus trees. It is not known whether the larva feeds on lichens or fungi (Gaedike 1986).

Monopis monachella (Hübner, 1796) Figure 2

AY, Arendal: Tromøy, Bjelland (EIS 6) 1 male 17 Aug. 1989 S.A. Bakke leg. & coll.

This species has been reported to have a world-wide distribution, but it has been shown that a complex of similar species is involved. Our species is widespread in Europe and the Palaeartic region including the Himalayas (Pelham-Clinton 1985). It occurs in Denmark, S Finland, and there are records from eight Swedish districts north to Uppland (Svensson et al. 1994).

Monopis monachella has a characteristic wing pattern and cannot be confused with any other European tineid species (Pelham-Clinton 1985).

Like its congeners this species feeds on animal products like skin, owl pellets, dead animals and in birds’ nests (Pelham-Clinton 1985).
Bucculacridae

Bucculatrix latviaella Sulcs, 1990

B. Krødsherad: Sandum (EIS 35) 1 male 28 Jul. 1923 E. Barca leg., ZMO coll.

The specimen was discovered in a box with unidentified Lepidoptera at ZMO.

B. latviaella was recently described from Latvia where it had been collected in two localities; it was also discovered a specimen from SE Finland (Sulcs 1990). It has not yet been found in Sweden.

Imago and genitalia of *B. latviaella* and the closely related sea shore species *B. maritima* Stainton, 1851, are figured in the original description (Sulcs 1990).

The habitat of *B. latviaella* is dry meadows, very different from that of *B. maritima*. The food plant is not known, but probable candidates are *Chrysanthemum leucanthemum* or *Achillea millefolium* (Sulcs 1990).

Yponomeutidae

Pseudoswammerdamia combinella (Hiibner, 1786)

Ø, Hvaler: Spjærøy, Tredalen (EIS 20) 1 male 25 May 1991 O. Sørli bråten leg. & coll.

This species is widespread in S and central Europe (Hannemann 1977). In N Europe known from Denmark and S Sweden north to Bohuslän (Svensson et al. 1994).

Wings and genitalia are figured by Hannemann (1977). Agassiz (1987) provides a colour figure of the moth, which is easily distinguished from other yponomeutids by its distinct copper spot in the apex of the forewing.

Elachistidae

Stephensia brunnichella (Linnaeus, 1767)

The species is widespread in S and C Europe to Asia Minor (Traugott-Olsen & Nielsen 1977). In N Europe known from Denmark, S Finland and north to Upland in S Sweden (Svensson et al 1994).

Elachista quadripunctella (Hübner, 1825)

AK, Bærum: Sandvika (EIS 28) 1 female Jul. 1934 E. Barca leg., ZMO coll.

The Norwegian specimen was discovered among unidentified specimens at ZMO.

The species is widespread in Europe from the Baltic to Italy, France and Belgium; not in Britain (Traugott-Olsen & Nielsen 1977). In N Europe known from the Swedish districts Västergötland and Uppland only (Svensson et al. 1994).

Imago and genitalia are figured by Traugott-Olsen & Nielsen (1977).

The larva is a leaf miner on *Luzula* (Traugott-Olsen & Nielsen 1977).

Elachista compsa Traugott-Olsen, 1974

This *Elachista* species is widespread in C Europe, but with only few records in the west; not in Britain.

There are records from a few districts in Denmark and S Finland; north to Upland in Sweden (Traugott-Olsen & Nielsen 1977, Svensson et al. 1994).

Imago and genitalia are figured by Traugott-Olsen & Nielsen (1977).

The larva is a leaf miner of *Melica* and *Deschampsia* (Traugott-Olsen & Nielsen 1977).

Elachista eskoi Kyrki & Karvonen, 1985

Elachista eskoi was recently described from several localities in S and C Finland (Kyrki & Karvonen 1985). It was subsequently recorded from W Jutland, Denmark (Buhl et al. 1987); Scotland (Pelham-Clinton 1988) and Norrbotten in N Sweden (Svensson 1988).

Wings and genitalia are figured in the original description (Kyrki & Karvonen 1985), by Buhl et al. (1987) and Pelham-Clinton (1988). The food plant is not known, but the habitat is wet places like river banks and sea shores (Kyrki & Karvonen 1985, Buhl et al. 1987).

Elachista occidentalis (Frey, 1882) (= *Biselachista freyi* sensu auct.)

The «species» called Biselachista freyi (Staudinger, 1870) by Traugott-Olsen & Nielsen (1977) was shown by Traugott-Olsen (1994) to be a complex of several closely related species. Biselachista freyi was reported as Norwegian by Traugott-Olsen & Nielsen (1977), but this record was based on a single specimen only labelled «Norway».

According to Traugott-Olsen (1994) *B. occidentalis* is distributed in Switzerland, Germany, Czech Republic and the Swedish districts Gotland and Småland. Imagines and genitalia of *B. occidentalis* and relatives are figured by Traugott-Olsen (1994).

In Germany the present species was bred from *Carex humilis* (Traugott-Olsen 1994).

Coleophoridae

Coleophora vulnerariae Zeller, 1839

C. vulnerariae is widespread in Europe (Patzak 1974). In N Europe known from Denmark and S Sweden north to Västergötland (Svensson et al. 1994).

The genitalia of this species which feeds on *Anthyllis*, are figured by e.g. Patzak (1974).

Coleophora lassella Staudinger, 1859

VAY, Flekkefjord: Sireosen (EIS 4) 1 male 26 Jun.-17 Jul. 1902 E. Strand leg., ZMO coll.

The Norwegian specimen was discovered by Ole Karsholt in a box with unidentified Microlepidoptera lent to the Zoological Museum in Copenhagen in connection with the work on the monograph of the N European Elachistidae (Traugott-Olsen & Nielsen 1977).

C. lassella is distributed through Europe, N Africa and Asia Minor (Patzak 1974). In N Europe known from Denmark, Finland, Denmark and Sweden, but apparently rare as it has been found in three Swedish districts only: Gotland, Bohuslän and Södermanland (Svensson et al. 1994).

This species, of which the biology is not known, can be identified using the genitalia figures in Patzak (1974).

Blastobasidæ

Hypatopa segnella (Zeller, 1873) (= *Holcocera perfugella* Jonasson, 1985) Figure 3

Holcocera perfugella Jonasson, 1985 was synonymized with *Blastobasis segnella* Zeller, 1873 and placed in the genus *Hypatopa* Walsingham by Sinev (1993).

Sinev (1993) recorded *segnella* from several E European countries and from Austria, Greece, Italy and France. In N Europe known from Sweden in eight districts from Blekinge to Värmland (Svensson et al. 1994).

The genitalia are figured by Jonasson (1985) and Sinev (1993), the moth is figured by Jonasson (1985). The biology is not known.

Gelechiidae

Athrips tetrapunctella (Thunberg, 1794)

This species is distributed in N Europe in Denmark, Finland and Sweden; in Sweden it is widely distributed, being known from most districts from Skåne to Jämtland (Svensson et al. 1994). Also known from

![Figure 3](image-url)

Hypatopa segnella (Zeller)
Great Britain (Kloet & Hincks 1972). The occurrence of this species in further European countries is not clear to us.

The genitalia are figured by Pierce & Metcalfe (1935) (as subocellea).

The larva feeds on Lathyrus palustris (Svensson 1993a).

Gelechia cuneatella Douglas, 1852

AK, Ås: Ås (EIS 28) 1 male 17 Aug. 1989 L. Aarvik leg. & coll. The specimen flew off the trunk of an old Salix caprea tree.

This species was listed as Norwegian, from AK, by Haanshus (1933). However, it was deleted from the Norwegian list by Opheim (1978). Thus, the present record is the first confirmed one from this country.

According to Sattler (1960) G. cuneatella is distributed in central Europe. In N Europe known from Denmark, Finland and Sweden north to Medelpad, but the records are scattered (Svensson et al. 1994).

The genitalia of cuneatella and other European species in the genus Gelechia are figured by Sattler (1960). Imagines of most N European Gelechia species, including cuneatella, are figured by Schnack (1978).

The food plant is Salix caprea and other species of Salix (Schnack 1978), Svensson (1993a).

Gnorimoschema herbichii (Nowicki, 1864) Figure 4

VAY, Farsund: Einarsneset (EIS 1) 4 males, 1 female 28 Jul. 1995 S.A. Bakke, K. Berggren & L. Aarvik leg. et coll. On a previous visit to Einarsneset, 3 Jun. 1995, K. Berggren observed a specimen running on the ground, but unfortunately was not able to catch it.

Povolny (1992) recorded herbichii from Spain, France, the Netherlands (with a question mark), Germany, Slovakia, Poland, Ukraine, Macedonia, Bulgaria and Iraq. Distinct subspecies have been described from Mongolia and Kamchatka. According to Karsholt (1995) the records from Germany should be confirmed. In N Europe in three districts in Denmark (Schnack ed. 1985); in Finland, scattered from north to south (Kyrki 1978); and from Skåne and Gotland in S Sweden (Svensson et al. 1994).

Povolny (1992) figured this species in colour and also illustrated the male and female genitalia.

The biology of streliciella is not known, but the moths are usually found in localities with Thymus (Povolny 1992).

Caryocolum blandella (Douglas, 1852)

AAY, Grimstad: Eide (EIS 6) 1 male, 1 female 24 Aug. 1984 K. Berggren leg. & coll. The two specimens were attracted to light. The record of this species from VAY by Opheim (1978) is a misidentification of Caryocolum blandelloides Karsholt, 1981.

In central Europe there are confirmed records from Great Britain, France, Germany and Austria (Huemer 1988). In N Europe from Finland, Denmark and S Sweden north to Bohuslän (Svensson et al. 1994). Huemer (1988) figured the wings and genitalia of this species.

The larva of blandella feeds on Stellaria holostea (Huemer 1988).

Dichomeris latipennella (Rebel, 1937) (= Acanthophila piceana Sulcs, 1968)

AK, Ås: Årungen (EIS 28) 1 female 16-22 Jun. 1989 S.A. Bakke & L. Aarvik leg., L. Aarvik coll. The specimen was captured in a light trap.

In central Europe known from Austria (Huemer & Tarmann 1993), Germany (Karsholt 1995, Sulcs 1968) and Latvia (Sulcs 1968). In N Europe from Finland and in Sweden from 12 districts in all parts of the country (Svensson et al. 1994).
D. latipennella is difficult to recognize on external characters. The genitalia which are useful for identification are figured by Sulcs (1968). Sulcs (1968) gave a detailed description of its biology. The larva develops in the buds of female flowers of tall Picea trees.

Brachmia blandella (Fabricius, 1798) Figure 5
Ø, Hvaler: Asmaløy, Huser (EIS 12) 1 male 31 Jul. 1994 L. Aarvik leg. & coll. Known from Spain (Vives Moreno 1994), Austria (Huemer & Tarman 1993), Germany (Karsholt 1995), Belgium (De Prins 1983) and probably several further European countries. In N Europe from Denmark, Finland and the following Swedish districts: Skåne, Blekinge, Småland, Öland, Gotland and Södermanland (Svensson et al. 1994). The food plant is not known, but it is probably grasses (Svensson 1993).

The male genitalia are figured by Piskunov (1981).

Torricidae

Acleris shepherdana (Stephens, 1852)
AAY, Grimstad: Reddalsvann (EIS 6) 1 male 14 Aug. 1986 K. Berggren leg. & coll.
A. shepherdana is known from central Europe and S Siberia (Bradley et al. 1973). In N Europe recorded from Denmark and Skåne, Blekinge and Västergötland in Sweden (Svensson et al. 1994). The moth is figured by Bradley et al. (1973).
The habitat is fens and marshy places where the food plant, Filipendula ulmaria, grows. It has also been reported to feed on Sanguisorba and Alchemilla (Bradley et al. 1973).

Aethes dilucidana (Stephens, 1852) Figure 6

Outside Scandinavia this species is only known from England, Sicily, N Africa and S Russia (Bradley et al. 1973). In N Europe from NE Jutland in Denmark and the Swedish districts Halland, Västergötland and Bohuslän (Schnack ed. 1985, Svensson et al. 1994). The moth is figured by Bradley et al. (1973).

In Norway A. dilucidana lives on sea shores where
the larva feeds on the flowers of *Angelica archangelica* ssp. *litoralis*. Mature larvae hibernate in the stem of the food plant. In England the food plant is *Pastinaca*. There is even a record on *Heracleum sphondylium* (Bradley et al. 1973).

Dichelia histrionana (Frölich, 1828) Figure 7

D. histrionana is distributed in central and S Europe (Kuznetsov 1989). In N Europe known from Denmark, Finland and Sweden north to Gästrikland (Svensson et al. 1994).

Larsen & Vilhelmsen (1986) gives a colour illustration of the moth.

The larva feeds on various species of *Picea* and *Abies* (Kuznetsov 1989). The Norwegian records indicate that *Abies* is the preferred host in this country.

Lobesia abscisana (Doubleday, 1849) Figure 8

The distribution in central Europe is restricted to England, Ireland, Holland, Belgium and Germany (Bradley et al. 1979, Palm 1982). In N Europe it has extended its range in recent years. It was found new to Sweden in Skåne in 1983 (Svensson 1984); now it extends north to Bohuslän and Uppland (Svensson et al. 1994). It is widespread in Denmark (Palm 1982, Schnack ed. 1985); also in Finland (Svensson et al. 1994).

The moth is figured by Bradley et al. (1979).

The larva develops in the shoots of *Cirsium arvense* (Bradley et al. 1979).

Notocelia trimaculana (Haworth, 1811) Figure 9

This species has a wide distribution throughout Europe and eastwards to Japan; North Africa (Bradley et al. 1979). In N Europe known from Denmark, Finland and Sweden north to Dalarne (Svensson et al. 1994).

N. trimaculana is figured in colour in Bradley et al. (1979).

The food plant is *Crataegus*, occasionally *Prunus* or *Pyrus* (Bradley et al. 1979).
Notocelia tetragonana (Stephens, 1834) Figure 10
MRI, Sunndal: Sunndalsøra (EIS 78) 2 males 23 Jun.
1988; STI, Trondheim: Gaulosen (EIS 92) 1 male 10
coll.; NTI, Frosta: Tautra (EIS 97) 17 males, 2 female
6 Jul. 1988 S.A. Bakke, B.Å. Bengtsson, L. Aar
vik leg. & coll.; Frosta: Haugan (EIS 92) 3 males, 1
coll.; AK, Asker: Brønnøya (EIS 28) 1 male 8 Jul.
According to Bradley et al. (1979) distributed in cen
tral and SE Europe including Britain and Ireland. In
N Europe known from Finland and and the two Swe
dish districts Gotland and Närke (Svensson et al.
1994). The first Swedish record was made at Göks
holm in Närke in 1976 (Bengtsson 1980). N. tetrago
nana is generally considered as a rare species.

This leaf roller is figured by Bradley et al. (1979)
and by Bengtsson (1980).
The larva feeds in spun leaves of Rosa (Bradley et al.
1979).

Gypsonoma aceriana (Duponchel, 1843)
VAY, Kristiansand: Augland (EIS 2) 1 male bred
from Populus May 1985 K. Berggren leg. & coll.
Distributed through most of Europe, also N Africa,
Turkey and Iraq (Bradley et al. 1979). In N Europe
in Denmark and the five southernmost districts in
Sweden (Svensson et al. 1994).
The moth is figured in Bradley et al. (1979).
The larva feeds in the shoots and leaf stalks of vari
ous poplar species, e.g. P. nigr, P. alba, P. balsamifera
(Bradley et al. 1979).

Cydia inquinatana (Hübner, 1799)
BØ, Røyken: Jerdal (EIS 28) 1 male 16 Jun. 1990 Y.
Berg leg. & coll.
C. inquinatana is distributed in central and S Europe
(Palm 1982). In N Europe in S Finland, E Denmark
and in 10 Swedish districts north to Gästrikland
(Palm 1982, Svensson et al. 1994).
The moth is figured by Larsen & Vilhelmsen (1990),
The larva feeds in the fruits of Acer platanoides
(Palm 1982).

Pammene inquilina T. Fletcher, 1938
AAY, Arendal: Tromøy, Hefte (EIS 6) 1 male 12
May 1996 S.A. Bakke leg. & coll.; VAY, Kristian
sand:Bråvann (EIS 2) 1 male 15 May 1996 K. Berg
gren leg. & coll. Both specimens were collected with
the aid of pheromones.
Distributed through central Europe eastwards to Rus
sia (Bradley et al. 1979). In N Europe known from all
over Denmark (Schnack ed. 1985) and in S Sweden
north to Västergötland (Svensson et al. 1994). In
1995 collecting with the aid of pheromones resulted in
records of inquilina from further Swedish districts
north to Bohuslän (Ingvar Svensson pers. comm.).
The moth is figured by Bradley et al. (1979), and the
genitalia by Kuznetsov (1989).
The larva develops in hymenopterous galls on Querc
us (Andricus and Biorhiza) (Bradley et al. 1979).

Pterophoridae
Pselnophorus heterodactyla (Müller, 1764) Figure 11
AK, Asker: Brønnøya (EIS 28) 1 male 22 Jun. 1980
S. Svendsen leg., NISK coll.; Ø, Hvaler: Hvaler kir-
Distributed throughout Europe (Gielis 1996). In N Europe from Denmark, Finland and Sweden north to Jämtland (Svensson et al. 1994).
Imago and genitalia are figured by Gielis (1996).
The food plant is *Lactuca muralis* (Svensson 1993); in central Europe also *Prenanthes purpurea* and *Lapsana communis* (Gielis 1996).

Adaina microdactyla (Hübner, 1813) Figure 12
Widely distributed in Europe; even Iran, Japan, the Solomon Islands and Indonesia (Gielis 1996). In N Europe from Denmark, Finland and north to Väst-
manland in Sweden (Svensson et al. 1994).
Imago and genitalia are figured by Gielis (1996).
The larva develops in the stems of *Eupatorium canabinum* (Gielis 1996).

Pyralidae

Elegia similella (Zincken, 1818) Figure 13

E. similella is distributed in central Europe where it is local and uncommon. In N Europe it has extended its range in recent years. It has been recorded in Denmark, S Finland and in Sweden north to Uppland (Palm 1986, Svensson et al. 1994).
The moth is figured by Palm (1986).
The food plant is *Quercus*, occasionally *Carpinus* (Palm 1986).

Scoparia basistrigalis Knaggs, 1866
This species is distributed in central and N Europe. In N Europe known from Denmark and S Sweden north to Västmanland (Palm 1986, Svensson et al. 1994).
The moth is figured in (Palm 1986).
The biology of this species is unknown, but the larva, like its congeners, probably feeds on moss. The habitat is deciduous forest (Palm 1986).

Agriphila latistria (Haworth, 1811)
This species has a wide distribution in central and S Europe, N Africa and Asia Minor. It has extended its range in recent years, and it was recorded for the first time in Denmark in 1974 (Palm 1986). In 1991 it was collected in Skåne in S Sweden (Svensson 1993b). The moth is figured in Palm (1986).
The larva of *A. latistria* constructs a case on the ground from where it feeds on grasses. Its preferred habitat in our neighbouring countries is sandy places near the sea (Palm 1986).

Geometridae

Timandra comai Schmidt, 1931
The well known species, *Timandra griseata* Petersen, 1902, has been shown to consist of two closely related species in N Europe (Kaila & Albrecht 1994). The commoner species in central Scandinavia retains the name *griseata*, and for the more southerly distributed of the pair, the name *Timandra comai* Schmidt, 1931 is available. Kaila & Albrecht (1994) reported *comai* from several countries in central and S Europe. It extends eastwards to the Novosibirsk region in Siberia. In N Europe in S Sweden north to Uppland and in S Finland to 62 latitude. In Denmark *comai* is common; the only Danish specimen of *griseata* was collected in 1994! (Larsen 1995). *Timandra griseata* is a boreal species which outside the Nordic countries is known from Estonia and E Russia: Carelia and the Leningrad area (Kaila & Albrecht 1994).

Eupithecia abbreviata Stephens, 1831
VAY, Kristiansand: Stangenes (EIS 2) 1 male 17 May 1985 S. Svendsen leg., NISK coll.
E. abbreviata is distributed throughout Europe except the northernmost part (Skou 1984). In Denmark it is widely distributed and quite common; in Sweden known from the four southernmost districts being common in Skåne (Skou 1984, Svensson et al. 1994). Imago and genitalia are figured in Skou (1984).
The larva feeds on *Quercus*, and the flight period is from the end of April till the beginning of June (Skou 1984).

Lymantriidae

Orgyia antiquoides (Hübner, 1822) (= ericae Germar, 1824)
This moth is distributed in the northernmost part of central Europe from the Netherlands eastwards to the Ural Mts. In Hungary, Romania and Bulgaria represented by the larger subspecies *intermedia* Friedrichszky, 1865. Further east it has been recorded in Mongolia and China (Freina & Witt 1987). In N Europe known from Denmark, Finland and Sweden. In S Sweden recorded north to Bohuslän and Dalsland. In connection with its distribution in Finland it also occurs in Norrbotten in N Sweden (Svensson et al. 1994).
The moth is figured in colour in Gullander (1963) and Freina & Witt (1987).
The habitat is moors where the food plants are *Cal­luna*, *Erica*, *Myrica*, *Andromeda* and *Salix* (Freina & Witt 1987).

Noctuidae

Calamia tridens (Hufnagel, 1766)

Ø, Rygge: Larkollen (EIS 19) 1 male 7 Aug. 1995

S.A. Bakke leg.

This species has a wide distribution in S and central Europe. It extends eastwards as far as NW China (Skou 1991). In N Europe in Denmark, the southern third of Finland and in Sweden north to Värmland. Since the 1970’ies it has declined in Finland, and in Sweden it is common only in the southernmost part of the country (Skou 1991, Svensson et al. 1994). The moth is figured in colour in Skou (1991).

Its preferred habitat is sandy places where the larva feeds on various grasses (Skou 1991).

ACKNOWLEDGEMENTS

We thank Dr. Jan Emil Raastad for permission to study the Lepidoptera collection at ZM O. Bengtson, Bjørn Magne Fjellstad and Ove Sørlibråten are thanked for loan of material and information about records; Dr. Wolfram Mey for information on Norwegian material in the Staudinger/Wocke collection in Berlin; Claes Eliasson for valuable discussions on old records of Lepidoptera from Norway; E. Jirle for sending *Pammene inquilina* pheromones; Ingvar Svensson for information on *P. inquilina* in Sweden; and Ole Karsholt for identifying the Norwegian specimen of *Coleophora lassella*.

REFERENCES

Collembola from Nordaustlandet, Svalbard

Arne Fjellberg

A survey of 10 different localities from central and northern part of Nordaustlandet, Svalbard, gave 34 species of Collembola of which three are reported for the first time from the Norwegian arctic islands: Bonetogastrura nivalis (Martynova), Anurida maritima (Guérin), Vertagopus arcticus Martynova. Highest number of species were recorded from rich meadow sites surrounding bird-cliffs. The extreme northern Phippsøya had a clearly depauperate species assemblage with the lowest average number of species per sample.

Arne Fjellberg, Gonveien 38, N-3145 Tjome, Norway.

INTRODUCTION

The Collembola fauna of the arctic islands of Norway was reviewed by Fjellberg (1994). The terrestrial invertebrate fauna of the large island Nordaustlandet in the northeastern section of the Svalbard archipelago has never been explored, mainly due to its inaccessibility. Only along the Hinlopen strait, separating Nordaustlandet from Spitsbergen, has there been a few samples made during earlier expeditions.

In the period 3-8 Aug. 1995 an expedition organised by the the Norwegian research project TERROK visited a number of sites along the north coast of Nordaustlandet, including the remote islands Sjuøyane (Phippsøya and Nelsonøya) and Brochøya (Figure 1). The expedition was based on the coast guard ship "Senja" and the use of helicopter made the field work very efficient.

Figure 1
METHODS

The following sites were visited (Figure 1):

(2) Marmorpynten in Pentavika on N-shore of Storesteinhalvøya. Rised beach ridges, stony polar deserts with scattered vegetation only. Some lush vegetation along streams and wet depressions, and near seashore. Dolomite outcrops and ridges with dry crevice vegetation. 20 samples.

(3) Depotodden at Brennevinsfjorden. Rocky habitats from sea shore to foot of bird cliffs. Mostly lush vegetation on sand/gravel and around boulders. 5 samples.

(5) «Bjørnehiet» between Brinknuten and Sandfordhögda at Rijpfjorden. Moss and lichens among stones in polar desert. Short stop at refuel site. 1 sample.

(6) Dokken at Duvefjorden. Sand/gravel beach along sea shore. Moss and grass vegetation, some Salix polaris. 3 samples.

(7) Oxfordhalvøya at Wahlenbergfjorden. Dry, stony beach ridges (polar deserts) with lush vegetation along streams, ponds and in depressions. Crevice vegetation on rocky outcrops. Goose manure along ponds and lakes. 11 samples.

(9) Nelsonøy, Sjuøyane. Top plateau (140 m a.s.l.) of island. Thick, manured moss/lichen among rocks. Bird-cliff. 3 samples.

(10) Brochøya. Moss, grass and lichens among rocks and driftwood near sea shore. Arctic tern colony. 5 samples.

On each site - except on (5) and (8) - samples were selected so as to cover a wide spectrum of the available habitat types. Eightythree soil/litter samples of variable size (usually 300-500 ccm), collected by the author, were brought back to the mainland and extracted in open Tullgren funnels. Also some Collembola samples collected by other invertebrate specialists of the research team have been identified.

RESULTS

The following species have been identified from the samples:

Family Hypogastruridae

Hypogastrura tullbergi (Schäffer, 1900)
One of the most common species, being present in 59% of the samples. Particularly abundant - and often dominant - in dry, stony beach ridges with scattered vegetation and in crevice vegetation on rocks and cliffs. Less common in damp, mossy sites. - Recorded in all collecting sites except Brochøya.

Hypogastrura concolor (Carpenter, 1900)
Less common than previous species (28% of samples), and usually in wetter habitats like mossy sites in bird colonies and along ponds with goose droppings. The records indicate that it becomes more abundant in the extreme northern sites (Phippsøya, Nelsonøya, Brochøya). On Phippsøya it was also common in moss and lichens on dry, sandy beach ridges. - Florabukta, Marmorpynten, Depotodden, Dokken, Oxfordhalvøya, Phippsøya, Nelsonøya, Brochøya.

Hypogastrura viatica (Tullberg, 1872)
Usually in seashore habitats with rich organic deposits. Also in bird cliffs and along ponds and lakes. - Florabukta, Marmorpynten, Depotodden, Oxfordhalvøya, Phippsøya, Nelsonøya, Brochøya.

Ceratophysella longispina (Tullberg, 1876)
Common in damp seashore meadows and in wet, mossy upland habitats. Also in bird-cliffs, on reindeer droppings and on carcasses. - Florabukta, Marmorpynten, Depotodden, Oxfordhalvøya, Brochøya.

Bonetogastrura nivalis (Martynova, 1973)
In crevice vegetation on rocks and in plant cushions in stony, dry tundra. Abundant in thick turf under old whalebones on rised beach ridges. A few collections also from wet sites. - Marmorpynten, Oxfordhalvøya (8 samples in all).

Willemia scandinavica Stach, 1949
A characteristic species in closed meadow vegetati-
on in drier sites under bird-cliffs and on seashores. - Florabukta, Depotodden, Dokken, Oxfordhalvöya.

Willemia similis Mills, 1934
Together with previous species, but less abundant. - Florabukta, Depotodden, Oxfordhalvöya.

Xenylla humicola (Fabricius, 1780)
Usually in sites with rich nitrophilous vegetation - like in bird-cliffs, on seashores, and near cabins and hunting stations. Both wet and dry conditions. - Florabukta, Oxfordhalvöya.

Family Neanuridae

Anurida polaris (Hammer, 1954)
Common in a variety of habitats, avoiding only the driest sites. Most abundant during wet conditions. - Recorded in all sites except Dokken.

Anurida maritima (Guérin, 1836)
In moss and lichens at seashore. - Dokken (1 specimen).

Micranurida pygmaea (Börner, 1901)
Meadow vegetation on gravelly slope at foot of bird-cliffs. - Dokken.

Friesea quinquespinosa Wahlgren, 1900
Mostly in dry sites in bird-cliffs and on seashores. - Florabukta, Marmorpynten, Depotodden.

Family Onychiuridae

Oligaphorura groenlandica (Tullberg, 1876)
Common in a variety of wet habitats, often very abundant in moss and grass along run-off water below bird-cliffs. Less common in dry upland tundra. - Present in all collecting sites.

Oligaphorura ursi (Fjellberg, 1984)
Only three records from deep soil below bird-cliffs, from dry beach ridge and from damp moss in a streambed. - Florabukta, Oxfordhalvöya.

Protaphorura arctica (Tullberg, 1876)
Aundant under stones and in rock vegetation in bird-cliffs and on seashores. Avoids wet sites. - Florabukta, Depotodden.

Protaphorura duplopectata (Strenzke, 1954)
In rock crevices and vegetation in bird cliffs and on seashores. - Florabukta, Depotodden.

Tullbergia simplex Gisin, 1958
Only once in a dry slope below a bird-cliff with rich vegetation and deep soil. - Florabukta.

Mesaphorura macrochaeta Rusek, 1976
Only in three samples from deep soil under rich vegetation below bird-cliffs. - Florabukta, Depotodden.

Family Isotomidae

Pseudanurophorus inoculatus Bödvarsson, 1937
Only once in deep soil under rich vegetation below bird-cliffs. - Florabukta.

Folsomia alpha Grow & Christiansen, 1976

Folsomia bisetosa Gisin, 1953
Common in dry bird-cliff meadows, in crevice vegetations on rocks, in plant cushions in dry upland tundra. Few records from wet sites. - Florabukta, Marmorpynten, Depotodden, Wordieodden, Dokken, Oxfordhalvöya, Brochöya.

Folsomia quadrioculata (Tullberg, 1871)
Common and abundant in rich vegetation in both dry and wet sites from seashores, bird-cliffs and upland tundra. - Present in all sites except Marmorpynten. The absence of the species from all 20 samples from Marmorpynten may be due to the very meagre conditions in the area.

Folsomia regularis Hammer, 1953
Common and abundant in both coastal and upland tundra, with a preference for wet, mossy sites. - Records from all collecting sites except Depotodden.

Archisotoma besselsi (Packard, 1897)
Only two records from seashores, in littoral gravel and under driftlogs. - Marmorpynten, Phippsöya.

Archisotoma polaris Fjellberg & Poinsot, 1975
Two records from seashores, under stones and among debris. - Marmorpynten.

Agrenia bidenticulata (Tullberg, 1876)
Common and abundant in various types of tundra, especially numerous in moss along streams and ponds and on *Nostoc* in wet places without other vegetation. - Florabukta, Marmorpynten, Wordieodden, Oxfordhalvöya, Phippsöya, Brochöya.

Isotoma anglicana Lubbock, 1862
Only in two samples from the surroundings of an old hunting cabin and in rich vegetation at foot of a bird-cliff (abundant). - Florabukta.

Isotoma neglecta Schäffer, 1900
A few samples from wet moss along ponds and stre-
Fjellberg: Collembola from Svalbard

Isotoma tshernovi Martynova, 1974
A few samples from meadows and moss vegetation, mostly in damp habitats. - Florabukta, Wordieodden, Oxfordhalvøya.

Vertagopus arcticus Martynova, 1969
A characteristic species in dry, arctic tundra. In crevice vegetation on rocks, among flakes of whittered dolomite and shale, in sand and gravel on raised beach ridges. Particularly abundant on Phippsøya. - Florabukta, Marmorpynten, Dokken, Oxfordhalvøya, Phippsøya.

Family Entomobryidae

Lepidocyrtus lignorum (Fabricius, 1871)
Only one sample from meadow vegetation in dry tundra. - Marmorpynten.

Family Neelidae

Megalothorax minimus (Willem, 1900)
Only in one sample from plant cushions on a dry gravel tundra. - Oxfordhalvøya.

Family Sminthurididae

Sminthurides malmgreni (Tullberg, 1876)
Common in wet tundra, in vegetation along ponds, streams and seashores. - Florabukta, Marmorpynten, Wordieodden, Dokken, Oxfordhalvøya.

Family Katiannidae

Sminthurinus concolor (Meiner, 1896)
Only in one sample from a bird-cliff, where it was abundant under stones and overhanging vegetation on rocks, some also creeping freely exposed over the rock. - Florabukta.

DISCUSSION

The 34 species of Collembola which were found in the present survey, is a relatively high number compared to the 49 species known from the whole of Svalbard archipelago, excluding Jan Mayen and Björnøya (Fjellberg 1994). This certainly reflects the broad variation and locally very diverse structure of the habitats in Nordaustlandet, in particular in the vicinity of the bird-cliffs and on seashores.

Although sampling intensity and sample size vary between the localities, Table 1 reflects the differences in habitat and faunal diversity. The 11 species from Phippsøya, based on 15 samples, clearly indicates a depauperate fauna compared to the 26 species from Florabukta present in 15 samples. Similar conditions are illustrated by the 7 species from Nelsonøya (3 samples) and the 13 species from Dokken (3 samples) and 7 species (5 samples) from Brochøya and 15 species (5 samples) from Depotodden.

Large tracts of Nordaustlandet are dominated by strongly whittered raised beach ridges and upland tundra with moss, lichens and only scattered patches of higher vegetation. Samples from such plant communities often had only 2 or 3 species per sample. The highest number of species per sample are coming from the richer meadow habitats along bird-cliffs, with a maximum of 11 species in a sample from Florabukta. Next come three seashore samples each with 9 species (Depotodden, Dokken, Wordieodden). On average the 15 samples from Phippsøya had only 3.8 species, with a maximum of 6 species in a meadow sample from the foot of a bird-cliff.

The present survey revealed three species which have not been reported from the Svalbard area before: Anurida maritima, Bonetogastrura nivalis and Vertagopus arcticus. The former species (one individual) is possibly accidental, but is a marine littoral species which

<table>
<thead>
<tr>
<th>Locality</th>
<th>Number of samples</th>
<th>Number of species</th>
<th>Average number of species per sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florabukta</td>
<td>15</td>
<td>26</td>
<td>5.5</td>
</tr>
<tr>
<td>Marmorpynten</td>
<td>20</td>
<td>17</td>
<td>4.9</td>
</tr>
<tr>
<td>Depotodden</td>
<td>5</td>
<td>15</td>
<td>7.2</td>
</tr>
<tr>
<td>Wordieodden</td>
<td>4</td>
<td>11</td>
<td>7.3</td>
</tr>
<tr>
<td>«Bjørnehiet»</td>
<td>1</td>
<td>5</td>
<td>5.0</td>
</tr>
<tr>
<td>Dokken</td>
<td>3</td>
<td>13</td>
<td>7.3</td>
</tr>
<tr>
<td>Oxfordhalvøya</td>
<td>12</td>
<td>21</td>
<td>5.5</td>
</tr>
<tr>
<td>Phippsøya</td>
<td>15</td>
<td>11</td>
<td>3.8</td>
</tr>
<tr>
<td>Nelsonøya</td>
<td>3</td>
<td>7</td>
<td>5.7</td>
</tr>
<tr>
<td>Brochøya</td>
<td>5</td>
<td>7</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Table 1
may pop up in seashore habitats almost anywhere. The two others are true arctic species and their presence in Nordaustlandet and apparent absence in Spitsbergen may reflect a faunal gradient in the Svalbard archipelago. *B. nivalis* is known from the north coast of Siberia (Franz Josef Land to Wrangel Island (Bebenko et al. 1994), while *V. arcticus* is circumpolar and even present in alpine sites in mainland Scandinavia (Fjellberg 1988). The latter species was particularly abundant in Phippsøya and appears to be a representative of the high arctic polar desert fauna.

ACKNOWLEDGEMENTS

The author is grateful to the research program TERROK (Terrestrial Ecology in Svalbard) and the Norwegian Polar Institute for invitation to join the expedition. Also it is a pleasure to honour the crew of the coast guard ship «Senja» - and in particular their helicopter pilots - for their enthusiastic support and interest in our work. Prof. Lauritz Sömme, prof. Sven-Axel Bengtson and Dr. Hans Petter Leinaas, the other invertebrate zoologists of the expedition, added samples and specimens to the collection.

REFERENCES

Short communications

Norwegian records of *Cixidia confinis* (Zetterstedt) and *C. lapponica* (Zetterstedt) (Homoptera, Achilidae)

Arne Fjellberg & Stig Otto Hansen

The two homopteran species *Cixidia confinis* and *C. lapponica* have a rather unusual way of life as they both feed on fungal hyphae in rotten logs of conifers, mainly pine. Both insects are broad and flattened, adapted to penetrate narrow spaces in wood cracks where small flocks of adults and juveniles may be found on areas infested by fungi.

Both species have a boreal distribution and *C. confinis* is endemic to Fennoscandia including Estonia. According to Ossiannilsson (1978) the species are very rare in Sweden and Finland, being absent from Norway and Denmark. Ehnström & Waldén (1986) regard the species as vulnerable in Sweden, being threatened by modern forestry practice.

Hansen & Borgersen (1991) reported the first Norwegian records from Vestfold where both species were found associated with the rare beetle *Calytis scabra* (Trogositidae) on old, fallen pine trunks (EIS 19, VE: Larvik, Pauler. 22.IV. and 29.IV.1989). The same authors reported a record of *C. lapponica* from EIS 55, HEs: Elverum, 20.V.1989 and of *C. confinis* from EIS 72, HEn: Alvdal, 18.V.1989. On both occasions the species were found in dead pine trunks affected by forest fires and fungal attacks. On 10. July 1996 we found both species together in a fallen pine trunk near northerne end of Lake Farrisvann, VE: Larvik (EIS 18). The trunk was lying on a SW-facing hillside about 280 m a.s.l., freely exposed to sun and wind. The trunk was completely dry and the insects were gathered around a whitish mycelium in the narrow spaces between the longitudinal, concentric lamellae of the splintered wood. Both juveniles and adults were present. The presence of these two rare species in the area around Farrisvann adds to an accumulating evidence of a genuine relic forest fauna of boreal affinity in this area (Fjellberg et al. 1996, Fjellberg & Hansen 1997).

SAMMENDRAG

Norske funn av *Cixidia confinis* (Zetterstedt) og *C. lapponica* (Zetterstedt) (Homoptera, Achilidae)

De to uvanlige sikadene *Cixidia confinis* (Zetterstedt) og *C. lapponica* (Zetterstedt) lever i sprekker på soppinfiserte stubber og stammer av furu der de livner seg av soppfyrene. De første norske funn av begge artene ble rapportert i 1991 fra Vestfold og fra søndre Hedmark (*C. lapponica*) og nordre Hedmark (*C. confinis*). Sommeren 1996 ble begge artene funnet sammen nær nordenden av Farrisvannet, Vestfold, på en liggende sopp fra oppsprukket furu der veden var oppsprukket i langs­gående, konsentriske lameller med soppfyter mellom lamellene. Artene har en boreal utbredelse og er sjeldne også i våre naboland, der de regnes som truet av moderne skogbruk.

REFERENCES

Peltis grossa (L.) - still present in Norway (Coleoptera, Trogositidae)

Arne Fjellberg & Stig Otto Hansen

INTRODUCTION

The wood-living trogositid beetle *Peltis grossa* has been recorded in Norway in the counties Hedmark, Akershus, Buskerud, Telemark and Aust-Agder. Most records are very old and the species has not been seen after 1940 (Zachariassen 1990, Hanssen 1995). Also in Sweden it has become rare and probably extinct in most localities in southern part of the country (Ehnström & Waldén 1986).

For some years we have been aware of the presence of remnants of primeval boreal forests in the hilly parts of inner Vestfold, mainly in the districts north and west of Larvik. Due to difficult topography old stands of spruce, pine, aspen, beech and oak have escaped modern forestry on hilltops and in ravines. A number of rare forest insects have already been found in these sites (Halvorsen et al. 1983, Borgersen et al. 1985, Hansen 1991, Hansen & Borgersen 1991, Fjellberg et al. 1996, Fjellberg & Hansen 1997). On 10 July 1996 we searched a hilly area near the northern end of lake Farrisvannet (VE: Larvik, EIS 19) and soon discovered the characteristic elongate flight holes of *Peltis grossa* in rotten stumps of spruce and birch. Remnants of imagines were found inside the stumps, and finally a live imago was spotted while sitting on the bark at foot of a dry spruce. Two days later the area was visited again, and a further five live specimens were found hiding under bark and in crevices on dead spruce. On 14 July a pupa was found in rotten birch, hatching during the first week of August. One imago was found in rotten spruce on 31 August, and finally one imago in rotten aspen on 1 September. The aspen was lying on the ground and had several characteristic flight holes of *Peltis*. The wood was infested with mycelium and had a firm consistence. The root end of the fallen log also had larval attacks of the lucanid beetle *Ceruchus chrysomelinus* (Hoch.), of which one imago was found on a spruce stump in the same area on 12 July. The latter species was recorded new to Norway from a nearby locality a few years ago (Hanssen 1995). Alle records of imagines and observations of flight holes were made over a stretch of 3 km in altitudes 200-300 m a.s.l. Most flight holes were found in standing 1-3 m tall stumps of spruce with red-rotten, fairly moist wood being infested with a whitish mycelium. These trees had been broken by wind. A standing, dead birch was also attacked, and a single fallen spruce trunk had a few flight holes. Apparently the beetle avoids dry, exposed sites as all the infested stumps were in N- or E-facing slopes or in other positions with reduced insulation.

SAMMENDRAG

Peltis grossa (L.) - fortsatt til stede i Norge (Coleoptera, Trogositidae)

Den sjeldne trelevende bilen *Peltis grossa* (L.) har ikke vært funnet i Norge siden før 1940, og man har antatt at den kunne være utdodd. Sommeren 1996 ble det funnet en rekke flyvehull og enkelte imago i stående og liggende stammer av død gran, bjerk og osp nær nordenden av Farrisvannet i Vestfold. Angrep ble registrert over en strekning på 3 kilometer, men var begrenset til nord- og østskråninger og andre steder med redusert innstråling. De fleste flyvehullene ble sett i 1-3 m høye stubber etter trær som var knekket av snø eller vind.

REFERENCES

Cnemacantha muscaria (Fallén, 1823) (Dipt., Lauxaniidae), a species new to Norway

Lita Greve

Lita Greve, Zoological Museum, Zoological Institute, University of Bergen, Muséplass 3, N-5007 Bergen, Norway.

The Lauxaniid fly _Cnemacantha muscaria_ (Fallén, 1823) is here recorded new to Norway. A total of 1 ♂, 12 ♀ and 1 specimen is represented in the collections of Zoological Museum, University of Oslo (=ZMO) and Zoological Museum, University of Bergen (=ZMB). Most of the material has been collected fairly recently, however, there are two old dry mounted specimens in the Zoological Museum which at least one female belongs to this species. The rest of the material is alcohol fixated.

Cnemacantha muscaria (Fallén, 1823) has been recorded in Europe from Southern Sweden and Southern Finland in the north and to Italy in the south, the British Isles included (Soös, 1984).

C. muscaria is a small, 2-3 mm, blackish fly. Among the Lauxaniidae it can be recognized on account of the strikingly infuscated wings with blackish costal border. The middle tibia bears a pair of ventral apical spurs. On thorax there are six rows of acrostical bristles.

The dark color and the small size probably makes _C. muscaria_ easy to overlook in Malaise trapped material. Still _C. muscaria_ is obviously rare in Norway and the species has probably a southern distribution in Norway as elsewhere in Fennoscandia. Collin (1948) says it appears to be very rare in the British Isles as he only had seen a total of four specimens from the British isles; two from England and two from Scotland.

One of the two old specimens from Zoological museum, Univ. Oslo is lacking the abdomen and part of the thorax, but still seems to be correct determined. The exact position of the locality “Havnen” is uncertain. Both the female and the specimen have a label marked with the name _Cnemacantha muscaria_, but no determinator is given.

Dr. László Papp, Budapest (pers.comm.), an expert on this family, considers _C. muscaria_ a fairly rare fly which is nowhere abundant.

ACKNOWLEDGEMENTS

I am indebted to Dr. Hugo Andersson, Lund, Sweden who determined the female from Ostøya, and to Fred Midtgaard, Oslo, Lars Ove Hansen, Oslo and Bjørn A. Sagvolden, Rollag who collected most of the material. I am also grateful to Dr. László Papp, Budapest for information.

SAMMENDRAG

Cnemacantha muscaria (Fallén,1823) (Dipt. Lauxaniidae) funnet i Norge

REFERENCES

Arytaina genistae (Latreille, 1804) (Homoptera, Psylloidea), a new Psyllid for Norway

Lita Greve & Bjørn A. Sagvolden

Lita Greve, Zoological Museum, University of Bergen, Muséplass 3, N-5007 Bergen-Univ.
Bjørn A. Sagvolden, P.O. Box 30, N-3626 Rollag.

A psyllid Arytaina genistae (Latreille, 1804) is reported new to Norway. One female of A. genistae was collected in a Malaise trap at Tett EIS 26 October 1995. The trap was operated throughout the summer 1995 by Bjørn A. Sagvolden. No other specimens were sorted out from the material.

A. genistae is common and widely distributed in Denmark and known from some provinces in southern Sweden: Sk. Bl. and Öl.

A. genistae belongs to the sub.fam. Arytaininae in the fam. Psyllidae. Vein R+M+Cu1 in the forewing is bifurcate, giving rise to R and M+Cu1. The head has genal cones. The metatibiae have apically around 5 large black spurs, the basal metatarsal segment has one black apical spur only. The family have two genera and only the wings of Arytaina are characteristically marked with long, light brownish spots in cells R2 and CU2. In addition there are spots along the wing border in M1, M2 and CU1.

For a more detailed description see Ossiannilsson (1992).

According to Ossiannilsson (1992) Sarothamnus scoparius, Genista tinctoria and Cysticus spp. are all possible hosts for this species.

Håkanes is located at Tinnjø (Tinnsjø) at 191 m a s l. The Malaise tent was situated on an open meadow with a mixed forest of large Salix sp. and Populus tremuloides L., intermingled with Betula sp., Sorbus aucuparia L., Prunus padus L., Pinus silvestris L. and Picea abies (L.). The areas near by is either farmland or occupied by private cabins partly with gardens.

REFERENCES

New names in Diptera: pearl midge, ground midge and log midge

Bjørn Økland & Boris Mamaev

Bjørn Økland, Norwegian Forest Research Institute, Høgskolev. 12, N-1432 Ås, Norway.
Boris Mamaev, All-Russia Institute for Continuous Education in Forestry, Institutskaya 17, 141200 Pushkino, Moscow Region, Russia.

The family Cecidomyiidae consists of three subfamilies: Lestremiinae, Porricondylinae and Cecidomyiinae. Up to now, gall midges has been used as a popular name for the whole family, while no popular names have been developed for the subfamilies. However, the name gall midge is a misleading name for the family, because two of the subfamilies utilize quite other microhabitats and do not contain gall makers at all. In Table 1, new English and Norwegian names are suggested for family and subfamilies.

Table 1. New English and Norwegian names for Cecidomyiidae and its subfamilies. - Nye engelske og norske navn for Cecidomyiidae med tilhørende underfamilier.

<table>
<thead>
<tr>
<th>Latin</th>
<th>English</th>
<th>Norwegian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cecidomyiidae</td>
<td>pearl midge</td>
<td>perlemygg</td>
</tr>
<tr>
<td>Lestremiinae</td>
<td>ground midge</td>
<td>feltmygg</td>
</tr>
<tr>
<td>Porricondylinae</td>
<td>log midge</td>
<td>lægermygg</td>
</tr>
<tr>
<td>Cecidomyiinae</td>
<td>gall midge</td>
<td>gallmygg</td>
</tr>
</tbody>
</table>

Pearl midge is short and easy to say, and the name derives from the pearl-string-shaped antennae which is very characteristic for this family. Ground midge is a short name, reflecting that many species in Lestremiinae develop in microhabitats within the ground layer of the forest, such as litter, in dead wood and fungi. Also, log midge is a short and informative name. Many species in Porricondylinae develop in dead wood, such as logs of various tree species. Gall midge is hereby restricted to the subfamily which really contains the gall makers.
Palaeomymar duisburgi (Stein, 1877) (Hym., Mymarommatoidae) – a species and superfamily new to the Norwegian fauna

Lars Ove Hansen

A single ♂ of the minute wasp *Palaeomymar duisburgi* (Stein, 1877) was collected in a malaise trap in SE Norway, Akershus county (AK), Asker: Bjørligås (EIS 28), 24 Aug.–10 Oct. 1995. This is the first record of the superfamily Mymarommatoidae in Norway. The systematic position of the group through the last 25 years is briefly reviewed.

INTRODUCTION

The family Mymarommatidae is represented with a single species in Europe (Nikolskaya 1978), and worldwide with about ten extant species in a single genus (i.e. *Palaeomymar*) (Gibson, 1993, Lin 1994). However, the family is ancient and specimens have been found in amber from the Cretaceous, Baltic and Dominican periods (i.e. 25–100 million years ago). Ottesen (1993) gave an account of the number of species in the different families of insects in Norway, and also included several unrecorded but highly probable families. Mymarommatidae is not included here. Nothing is known about the biology of the family, but a specimen has once been rared from a bracket fungus (Gibson 1993). *P. duisburgi* is recorded from Sweden, Denmark, Germany, Switzerland, Belgium, Bohemia, France, England and China (Stein 1877, Landin 1971, Fitton et al. 1978, Kalina 1989, Lin 1994).

SYSTEMATIC POSITION & DIAGNOSIS

The systematic position of the group has been at issue (table 1). Nikolskaya (1978) includes the family in the superfamily Proctotrupoidea. However, some authors (e.g. Landin 1971, Fitton et al. 1978) include the group in Mymaridae, while others put it in a separate chalcidoidea family, Mymarommatidae, close to Mymaridae (e.g. Gauld & Bolton 1988, Borror et al. 1989, Kalina 1989). Gauld & Bolton (1988) stress that the placement of the group in Chalcidoidea is questionable because the species lack the characteristic longitudinal multiporous plate sensilla found on the antennae of other members of this superfamily. Gibson (1993) finally puts the group in a separate superfamily: Mymarommatoidae. According to Gibson (1993) the family is characterized by very small species; all less than 1 mm; antenna geniculate; flagellum filiform in male and with club of 1-2 flagellomeres in female; male with 11 flagellomers, female with 7-9; head with strongly convex frontal surface and flat posterior surface separated by a pleated membrane, contracting dorsally in a bellow-like manner; individuals alate, brachypterous or apterous; fore wing of fully winged specimens spoon shaped with mesh-like pattern; wing with long marginal setae; hind wing of fully winged specimens reduced to short, stalk-like, apically bifurcate vein; tarsi with 5 tarsomeres.

<table>
<thead>
<tr>
<th>Author</th>
<th>Family</th>
<th>Superfamily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landin (1971)</td>
<td>Mymaridae</td>
<td>Chalcidoidea</td>
</tr>
<tr>
<td>Nikolskaya (1978)</td>
<td>Serphitidae</td>
<td>Proctotrupoidea</td>
</tr>
<tr>
<td>Fitton et al. (1978)</td>
<td>Mymaridae</td>
<td>Chalcidoidea</td>
</tr>
<tr>
<td>Borror et al. (1989)</td>
<td>Mymarommatidae</td>
<td>Chalcidoidea</td>
</tr>
<tr>
<td>Kalina (1989)</td>
<td>Mymarommatidae</td>
<td>Chalcidoidea</td>
</tr>
<tr>
<td>Naumann (1991)</td>
<td>Mymarommatidae</td>
<td>Chalcidoidea</td>
</tr>
<tr>
<td>Gibson (1993)</td>
<td>Mymarommatidae</td>
<td>Mymarommatoidae</td>
</tr>
</tbody>
</table>
THE NORWEGIAN RECORD

A single ♀ of *Palaeomymar duisburgi* (Stein, 1877) (= *Petiolaria anomala* Blood & Kryger, 1922) appeared in a malaise trap in Akershus county (AK) Asker: Bjørkås, (UTM-ED50: 32VNM839293) 24 Aug.–10 Oct. 1995 (leg. O. Hanssen & LOH). The length of the body is about 0.6 mm. The malaise trap was situated in a southfaced warm slope with mixed forest dominated by hazel (*Corylus avellana*), lime (*Tilia cordata*), rowan (*Sorbus aucuparia*), oak (*Quercus* sp.), spruce (*Picea abies*) and pine (*Pinus sylvestris*). The chalcareous ground is rich in orchids and other basophilous herbs. Dead and decaying wood are abundant in the area. The samples from the malaise traps contained also many Mymaridae and Trichogrammatidae (Chalcidoidea), as well as some interesting Aculeata. The specimen is deposited at the Zoological Museum in Oslo.

ACKNOWLEDGEMENTS

I am greatly indebted to Oddvar Hanssen for his assistance during the field work, and to Claudia Torner Mora and Jan Emil Raastad for comments on the manuscript. The wasp was recorded in the project “the insect fauna of the Oslofjord (No.: 16320)” executed by Norwegian Nature Research Institute and financed by the Norwegian Directorate for Nature Management.

SAMMENDRAG

Palaeomymar duisburgi (Stein, 1877) (Hym., Mymarommatoidae) – ny art og overfamilie for den norske fauna

REFERENCES

Palpomyia remmi Havelka, 1974 (Diptera, Ceratopogonidae) new to Norway

Jaroslaw Krzywinski

The first record of *Palpomyia remmi* Havelka (Diptera, Ceratopogonidae) in Norway is presented. The species has not been reported in Scandinavia as yet. Notes on its general distribution are given. On the basis of morphological data it is concluded that *P. remmi* may be conspecific with North American *P. canadensis* Grogan & Wirth.

Jaroslaw Krzywinski, Department of Invertebrate Zoology, University of Gdansk, Al. Pilsudskiego 46, 81-378 Gdynia, Poland.

INTRODUCTION

The biting midges, Ceratopogonidae (Diptera) are tiny (body length 1-4 mm) nematocerous flies. Though commonly present in a wide range of semiaquatic and aquatic habitats in immature stages they are still poorly known in many regions of the world. Only hematophagous forms that take blood from mammals and birds have been studied better because of their importance in medical and veterinary terms. In the blood feeding group, *Culicoides* characterized by wings patterned with dark and light spots are notorious pests in northern Europe, known by their bites causing intense sharp pain and long lasting irritation not only to specialists in entomology.

Females of *Palpomyia* are predators capturing their prey in flight. They attack almost exclusively the males of other Nematocera or the smaller Ephemeroptera. Female, in addition to her other prey, usually eats the male during mating, reducing his body to an empty cuticle. This phenomenon was described in details by Downes (1978). Males are not predators and feed on sugar taken from the nectar of flowers.

Apart from *Culicoides* studied by Nielsen (1964) in Denmark Scandinavian biting midges have not received comprehensive treaty since Staeger (1839), Zetterstedt (1838, 1850, 1855) and Lundström (1910, 1916). The Ceratopogonidae are particularly poorly known in Norway. Only 20 species have been reported in this country to date (Krzywinski in press, Szadziewski et al. in press). For a comparison - 57 species of Ceratopogonidae have been encountered in Finland (Hackman 1980) and as many as 156 species in Britain (Kloet & Hincks 1976).

During the study of the collection of biting midges in the Natural History Museum (London), a male specimen of *Palpomyia remmi* Havelka, 1974 captured at Nordland, Svartisen, Engabreen V., 16. June-8. Sep. 1950 by L. Davies (B. M. 1950-542) was found. The species is new to Norway. The determination was confirmed by a comparison of Norwegian specimen with a male specimen from Germany, which was determined by Dr. Havelka.

P. remmi is known from northern Hessen (Havelka 1974, 1976) and environs of Bonn (Havelka & Caspers 1981) in Germany. Moreover Havelka (1981) mentioned the species also from the Alps (near Innsbruck) but this record is not clear. Remm (1988) listed the species from Estonia in Soós & Papp’s Catalogue of Palaearctic Diptera. However, neither in any other publication concerning the biting midges, nor in an extensive unpublished Remm’s handwritten catalogue, where every specimen of *Palpomyia* captured in the former USSR and determined by Remm had been put, any record of *P. remmi* from Estonia was found. For this reason the record from Estonia (Remm 1988) is treated here as doubtful.

P. canadensis Grogan & Wirth from North America is very closely related to *P. remmi*. Grogan & Wirth (1979) suggest that *P. canadensis* is restricted to cold habitats as in the north it ranges to near the Arctic Circle and in the south it has been recorded from high altitudes in the mountains. Present record of *P. remmi* from the locality beyond the Arctic Circle evidence that the distribution of both species is very similar.

The development of *P. remmi* takes place in cold waters of small brooks (Havelka 1976) and springs (Havelka & Caspers 1981). The species is abundant in brooks (up to 103 individuals per m²), where constitutes up to 48% of total number of Ceratopogonidae collected by emergence traps set over water, whereas only individual specimens were captured over springs.
According to the illustrations of male genitalia given by Havelka (1974) in his original description of *P. remmi* ninth sternum is less than 2 times broader than long. The specimens from Norway and from Germany studied by the author have ninth sternum much shorter, 3.5 times broader than long (Figure 1). Because ninth sternum is pale brown and almost hyaline its distal margin is hardly visible; this probably resulted in Havelka's misinterpretation of its shape.

The present comparison of *P. remmi* male specimens with the description and illustrations of *P. canadensis* revealed no differences between these two species as stated by Grogan & Wirth (1979). Hence, *P. remmi* differs from the American species only in little more yellowish female legs and distal wing infuscation (Grogan & Wirth l.c.). Thus *P. canadensis* and *P. remmi* may be conspecific. However, to determine it more materials of both sexes, including types, should be studied.

ACKNOWLEDGEMENTS

I am grateful to Dr. Brian Pitkin for the loan of the material and his help during my study of Ceratopogonidae in The Natural History Museum, London. I also wish to thank Mr. Kalle Remm from Estonia for his hospitality and allowing me to study the catalogues of the late Dr. H. Remm.

REFERENCES

SAMMENDRAG

Palpomyia remmi Havelka, 1974 (Diptera, Ceratopogonidae) rapporteres her fra Norge for første gang.

Figure 1

Palpomyia remmi, A - male terminalia (parameres removed); B - parameres.
Fauna norv. Ser. B 44.1997

Molorchus umbellatarum (Schreber, 1759) (Coleoptera, Cerambycidae) new to Norway

John Skartveit

The cerambycid *Molorchus umbellatarum* is reported new to Norway. One specimen was collected on umbellifer flowers on a meadow at VE, Tjøme, Gon (EIS 19), 24 June 1995, and a second specimen nearby on 12 July 1995.

One specimen of *Molorchus umbellatarum* (Schreber) was collected by the author on umbellifer flowers (species not recorded but probably Anthriscus sylvestris) at VE, Tjøme: Gon (EIS 19) on 24th June 1995. The specimen was collected, together with several other cerambycids (*Gaurotes virginea* (L.), *Stenostola ferrea* (Schrank) and *Anoplodera sanguinolenta* (L.)) on a meadow covered with umbrellifers and *Urtica dioica*, surrounded by mixed deciduous and coniferous forest. There were several small orchards in the surrounding area. On 12 July 1995 a second specimen was collected by A. Fjellberg in a garden approximately 200 meters away from the locality where the first specimen was taken. The south end of the island Tjøme is known to have an unusually rich insect fauna (Andersen and Solli 1988).

Molorchus umbellatarum is habitually rather similar to the common species *M. minor* (L.) but differs in that the third antennal segment is not longer than the first, the femorae less thickened apically, and the lateral tubercles on the pronotum more rounded.

The species has previously been recorded from Sweden, Denmark, Latvia and Lithuania (Silfverberg 1992), and also from Great Britain (Bily and Mehl 1989). It is widespread in Europe (Bily and Mehl 1989). According to Bily and Mehl (1989), the main host plant for the species is apple (*Pyrus malus*) but *Rosa canina*, *Rubus* spp. (Duffy 1946), *Cornus sanguineum* and *Viburnum opulus* (Demelt 1966) have also been recorded as hosts. The life cycle takes two years and imagines emerge in June-July (Bily and Mehl 1989).

ACKNOWLEDGEMENTS

Thanks to Lita Greve, Bergen, for the loan of specimens from the Andreas Strand collection, by which the identification of the specimen could be verified, and to Arne Fjellberg, Tjøme, for permission to cite his record of *M. umbellatarum*, and also for keen advice on interesting localities on Tjøme.

SAMANDRAG

REFERENCES

IN MEMORIAM
Jan Kielland (1923-1995)

Jan Kielland was tragically killed in a road accident in Tanzania on the 9th of October 1995. Only 5 days earlier he had left Norway for yet another collecting trip to his beloved Tanzania. In Nairobi he joined up with his fellow collector, Ivan Bampton, and together they set off for Dar es Salaam to arrange for necessary permits before heading for a poorly investigated area in southern Tanzania. Just before reaching Dar es Salaam they hit a stranded lorry in the dark. Jan was killed on the spot.

Jan Kielland was born in Oslo on the 2nd October 1923. His interest for insects started very early: already at the age of six he had his first collection of coleoptera and lepidoptera. But it was not until his parents bought a house on Borøy outside Tvedestrand that his collecting became large-scale and systematic. He very early became a member of the Norwegian Entomological Society and started supplying specimens for the Zoological Museum, Oslo. Several of the species from Borøy were first records for Norway and were subsequently published by Magne Opheim in his 'Catalogue of the Lepidoptera of Norway'.

In 1945 Jan migrated to what was then the Tanganyika Territory to help his elder brother on his farm at the Ngorongoro Crater. Later he started mica prospecting as a source of income, but throughout his 30 years stay in Tanzania butterfly collecting was his main interest. Even after his return to Norway in 1974, practically every autumn he would pack up his modest field equipment and leave for Tanzania to make use of the rainy season for more butterfly collecting.

It is impossible even to guess the number of specimens Jan collected in Africa over the past 50 years, but it must be in the order of hundreds of thousands. After an average season in Tanzania - from October till May - he would come back to Norway with 10,000-15,000 specimens. These he would use partly for his scientific studies, partly for sale to manage to finance his next collecting trip.

Jan's scientific work consists of more than 30 published articles plus an almost endless series of unpublished progress reports to the Tanzania Commission for Science and Technology ('Utafiti'), the body which has to approve any research work involving field work in that country. In addition he reported the results of his surveys of the butterfly fauna of the various national parks directly to the Serengeti Research Institute.

With a few exceptions only, Jan's publications (see Appendix) were directly connected to his study of Tanzanian Rhopalocera leading up to his major work 'Butterflies of Tanzania' which was published in 1990. This described all the 1120 species of butterflies known from Tanzania at that time. Only a handful of these had not been collected by Jan himself.

Jan's last 5 years were devoted to the study of the butterfly fauna of the extensive swamp forests in the Kagera Region close to the Uganda border, one of the few areas he had not yet explored and with a fauna related to the Central African biotic regime of the Congo Basin. This work added more than 250 new species records of Rhopalocera for Tanzania including more than 30 species new to science.

Jan's intention was to publish a supplementary volume to his 'Butterflies of Tanzania', and he left a nearly 150 page long handwritten manuscript covering most of the new species additions. He had planned to make the 1995-96 season his last collecting period before completing this volume. This work is now being carried on by the Nairobi-based 'African Butterfly Research Institute' (ABRI) formed by Jan's close friend Steve Collins in co-operation with another
close friend of Jan, Colin Congdon. ABRI will also take over the majority of Jan’s collection ensuring its proper curation. Thus Jan’s lifework will be carried on.

In all Jan described and published 144 taxa of Afrotropical butterflies. The majority of these were of Tanzanian origin. But a few new species from other parts of Africa were described in connection with his major revisions of various of the very difficult and critical Satyrid genera of *Ypthima* (1982a), *Aphysonoeura* (1989b), *Neocoenyra* (1990a) and *Henotesia* (1994a). Most of the types were presented to the Natural History Museum, London, an institution he visited on uncountable occasions. Jan always based his descriptions on meticulous genitalia dissection work. Thousands of microscopic slides and hundreds of genitalia drawings form an extremely important part of the collection he left.

Although Jan’s main interest was focused on the Rhopalocera he would always collect other groups of insects during his many safaris. The undersigned was generously offered his collections from various parts of Tanzania. Till now only about one third have been mounted, but already many of these (probably in the order of hundreds) have turned out to be undescribed species. Jan also supplied many other research workers with Tanzanian material, notably the late Vincent Allard who described many new species of Cetoniinae (Coleoptera: Scarabidae) based on Jan’s collections. Jan had an international network of contacts and friends, a fact emphasized by the many new species named in honour of him.

Beside his near life-long membership in the Norwegian Entomological Society, Jan was a member of the Union des Entomologistes Belges through which most of his articles were published in their journal Lambillionea. In his later years he also became a member of the Lepidopterist’s Society of Southern Africa as well as the Wildlife Conservation Society of Tanzania.

It is doubtful whether there exist any living man who has covered more ground in Tanzania than Jan Kielland. He visited every region in the nearly one million sq.km big country. He would not hesitate to start on long safaris lasting for weeks in absolutely roadless tracts of wilderness. Many of the areas will probably never be revisited while friends in their present state. They are simply too remote and too troublesome to reach. Several of the forests he visited along Lake Tanganyika in the sixties and seventies now no longer exist. His collections from these forests, including several endemic species, represent a documentation for the future of a fauna now partly extinct. His near encyclopedic knowledge of the Tanzanian bush enabled him to move about without maps nor a compass and without ever getting lost.

Jan’s observations of the dwindling occurrences of virgin forests became a growing concern to him in his later years. His progress reports to ‘Utafiti’ more and more took the form of appeals for the conservation of these unique habitats. Jan’s very last publication (1995) was a cry of urgency for one of the unique swamp forests (Munene) in Kagera, where drastic decimation and destruction took place within the five-year-period 1990-95.

Jan found his final resting place on top of Wanzizi, a small hill which was one of his favourite stamping grounds and where now *Alaena kiellandi* slowly flutters over his ashes.

Anders Bjørnstad, Henneseid, N-3750 Drangedal, Norway.

Jan Kielland’s published articles

- 1984. Two new subspecies of *Charaxes lasti* Grose Smith
(Lepidoptera, Nymphalidae) from Tanzania. - Lambillioina 83: 70-77, 2 pls.
- 1987a. Some new Rhopalocera from eastern Africa (Lepidoptera: Lycaenidae, Nymphalidae) - Lambillioina 87: 38-45, 75-79.

Helene Oleane Tambs-Lyche 1913-1993

Det er relativt få kvinner blant norske entomologer. Helene Tambs-Lyche er en av disse, og hun har gjort en meget viktig innsats innenfor sittfelt av norsk entomologi.

I Danmark arbeidet hun videre som privatforsker, og hadde altså samlet bortmot tyve år med ansettelse ved vitenskapselige institutioner. Helene Tambs-Lyche tok med en betydelig

Helene Tambs-Lyches samling av preparater av norske bladlus er nå deponert i Zoologisk Museum, Zoologisk Institutt, Univ. i Bergen. Samlingen er på omtrent 8 000 preparater. Journalføring av materialet er begynt, men det vil nok gå en tid før dette er fullført.

Jeg har gode minner om Helene Tambs-Lyche som en munter, trivelig og hjelpsom kollega.

Jeg vil tilslutt takke for opplysninger fra Dr.philos Astrid Løken, og fra Helene Tambs-Lyches datter, sivilarkitekt Bente Odner, begge Oslo.

Publikasjoner av Helene Tams-Lyche:

Videre er det referert til viktige bidrag av Helene Tambs-Lyche i følgende artikler:

Guide to authors

FAUNA NORVEGICA publishes papers in English, occasionally in Norwegian with an extended English summary. When the paper is written in English, an extended summary in Norwegian is also required, to be printed after Acknowledgements. Authors should consult this issue or more recent copies of Fauna norvegica and follow their style as closely as possible. Manuscripts that do not conform to this guide will be returned for revision.

Manuscripts, double-spaced, on one side of the paper and with wide margins, should be submitted to the editor-in-chief in duplicate, including figures and tables. Separate sheets should be used for (i) title page, with author’s name and a suggestion for a running head (36 characters or less), (ii) abstract, followed by the name(s) and full postal address(es) of the author(s), (iii) tables with their headings, (iv) numbered figures, and (v) legends to figures. The approximate position of tables and figures in the text should be indicated in the margin. The body of the article should be organised in sections labelled Introduction, Methods and material, Results, and Discussion. All acknowledgements should be gathered under a single heading at the end of the text.

Short Communications are also accepted. Unless such contributions are kept very short (i.e. less than two pages in the final print), they must be structured in the same way as outlined for manuscripts (see above).

Nomenclature. The first time a binomen of an invertebrate or a little-known vertebrate is used in the text, the name of the author should be included. Names of authors should be written in full, except L. for Linnaeus. The date of the initial description can be included when considered necessary, for example Rhyacophila nubila (Zetterstedt, 1840). All Latin names of genera and species in the text and tables should be in italics. Names of higher taxa and other Latin terms should be left unitalicised and put in parentheses when their English synonyms are included.

Abbreviations, number formats, etc. All measurements are to be given in SI units. Use s (second), min (minute), h/hrs (hour/hours), yr/ys (year/years), but do not abbreviate day, week or month. Dates should be given as 10-20 Aug. 1970 (except March, April, May, June, July, which should not be abbreviated). Indicate times of day according to the 24-hour clock (e.g. 0900 and 2100). Do not use daylight-saving time, but specify that standard time is used at the first reference to time of day. Use the following abbreviations for some common statistical terms: SD, SE, CV, n, ANOVA, F, r, t-test, U-test, df, p, ns). Omit periods between numbers and statistical parameters (e.g. t, df, p, n), operators (e.g. ≈, >, <), % and °C. Number formats should comply with these examples: 10^4, 0.01, 1000, 10 000, 10^6. Do not give the exact p-value of a statistical test, just indicate p-level as p<0.001, p<0.01, p<0.05, p>0.05, p>0.1, etc.

Figures and Tables. Each illustration must be clearly numbered, and an abbreviated title and the name(s) of the author(s) must be written lightly on the reverse side. If the article is in Norwegian, the figures and tables must have both Norwegian and English text. Write Table and Figure both in the running text and above/beneath tables and figures. Figure originals should be no larger than 20x28 cm (A4 with margins). Photocopies are unacceptable. Choose contrasting patterns and avoid dotted and fine tone rasters. In the final page layout, the illustrations will occupy either one (66 mm), one and a half (100 mm) or two (137 mm) column’s width, and cannot be higher than 195 mm. Tables will be adjusted to fit either one or two columns in width. Do not use vertical lines in tables.

In line illustrations, line thickness should not be less than 0.25 mm after reduction. Lettering should not be smaller than 8 points (1.5 mm) after the figure is reduced. Use lower-case letters and choose a font without serifs, preferably Roman sans serif, but Helvetica, Arial, Futura, Swiss or Avant Garde may also be used. Typewritten and hand-written lettering are not accepted. Symbols or different fills should be identified in a key, preferably placed at the top of the illustration. Axis titles should be centred and parallel to the axis. Put units of measurements in parentheses. Photographs must be of high quality, with good contrast. Magnification scale bars can be inserted.

References. In the text: Black (1979), Black & White (1973, p. 100), or as noted by Green (1978) and Black
Multiple references should be given in chronological order, i.e. (Black & White 1973, Green 1976, 1979, Black 1978). All references cited should be listed at the end of the paper in alphabetical order, using formats illustrated by the examples below. Works by the same author(s) should be listed in chronological order, but those by a single author should precede multiauthored works by the same first author, regardless of date. The name of the second author (and the third author, etc.) should be given higher priority for order than the date of publication. Works where author(s) name(s) and year are identical should be placed in alphabetical order by the first word in the title and lettered consecutively (e.g. 1996a, 1996b).

Paper:

Book:

Chapter:

Report:

Thesis:

Conference proceedings:

Computer files. After acceptance, the author will be asked to send the text on a floppy disk (preferably 3.5") suitable for an IBM compatible word processor in Word for Windows. The operating system and word processor used should be clearly specified. Any figures generated by computer graphics compatible to our preferred format should also be included on the disk as separate files using names with standard extensions. Specify the program in which your figure(s) was/were created and saved. The preferred format is Adobe illustrator for Macintosh, but compatible PC formats are acceptable, e.g. Coral Draw (.CDR), Adobe illustrator (.AI) and Encapsulated Postscript (.EPS).

Proofs. One copy of the first proof will be sent to the author. It should be returned to the Managing Editor without delay. Alterations should be limited to correcting typesetting errors. Extensive alterations will be charged to the author.

Reprints. To order reprints, the completed order form (received with the first proof) must be returned together with the first proof. Orders submitted after the journal has been printed are subject to considerably higher prices. The journal does not provide free reprints, and reprints are not mailed until after payment is received.

Copyright transfer. As soon as the article is published, the author is considered to have transferred all rights to the publisher; requests for permission to republish the article, in whole or in part, should be sent to the Managing Editor.
Content

FAUNA NORV. SER. B 44 (1) 1997

Hogstad, O.: Population fluctuations of *Epirrita autumnata* Bkh. and *Operophtera brumata* (L.) (Lep., Geometridae) during 25 years and habitat distribution of their larvae during a mass outbreak in a subalpine birch forest in Central Norway.. 1

Andersen, J.: Habitat distribution of riparian species of Bembidiini (Col. Carabidae) in South and Central Norway.. 11

Økland, B. & Zaitzev, A.I.: Mycetophilids (Diptera, Sciaroidea) from southeastern Norway............... 27

Riedel, M. & Berg, Ø.: Faunistic remarks on Norwegian Ichneumonidae (Hymenoptera) 39

Fjellberg, A.: Collembola from Nordaustlandet, Svalbard.. 71

Short communications

Fjellberg, A. & Hansen, S. O.: Norwegian records of *Cixidia confinis* (Zetterstedt) and *C. lapponica* (Zetterstedt)(Homoptera, Achilidae)... 76

Fjellberg, A. & Hansen, S.O.: *Peltis grossa* (L.) - still present in Norway (Coleoptera, Trogositidae)..... 77

Greve, L.: *Cnemacantha muscaria* (Fallén, 1823) (Dipt., Lauxaniidae), a species new to Norway 78

Greve, L. & Sagvolden, B.A.: *Arytaina genistae* (Latreille,1804) (Homoptera, Psylloidea), a new Psyllid for Norway ... 79

Økland, B. & Mamaev, B.: New names in Diptera: pearl midge, ground midge and log midge...... 80

Hansen, L. O.: *PalaeomymDr duisburgi* (Stein, 1877) (Hym., Mymarommatoidea) – a species and superfamily new to the Norwegian fauna... 81

Krzywinski, J.: *Palpomyia remmi* Havelka, 1974 (Diptera, Ceratopogonidae) new to Norway 83

Skartveit, J.: *Molorchus umbellatarum* (Schreber, 1759) (Coleoptera, Cerambycidae) new to Norway 85

IN MEMORIAM

Jan Kielland (1923-1995) .. 86

Helene Oleane Tambs-Lyche (1913-1993) .. 88

Attention!
Please check that you have received ser. B., vol. 43 no 2. In case you have not, let us know and the correct issue will be sent. The printing office regrets the error.